期刊文献+

基于剪辑支持向量机的雷达目标识别方法 被引量:1

Radar Targets Recognition Based on Edit Support Vector Machines
下载PDF
导出
摘要 支持向量机(SVM)具有分类精度高、泛化能力强等优点,已成功应用在雷达目标识别领域。但其性能受多种因素影响。针对低信噪比、分类面混迭、参数选取等问题,文章提出剪辑SVM分类器,通过小波去噪、剪辑、矩阵相似度优选参数等手段有效抑制上述问题的影响。外场实测数据的仿真也表明剪辑SVM的性能优于传统SVM与最近邻分类器。 Support vector machines has a high classification accuracy and strong generalization ability.It is successfully applied in the radar targets recognition.In view of problems such as low SNR,large training samples,classification face aliasing,parameter value choosing,this paper bring forward Edit-SVM classifier.We can restrain the problem mentioned before efficiently through wavelet de-noising,cluster,editing and matrix similarity optimization parameters.The acquired outfield data proved the performance of Edit-SVM is better than traditional SVM and nearest neighbor classifier.
出处 《舰船电子工程》 2010年第4期68-71,165,共5页 Ship Electronic Engineering
关键词 高分辨距离像 目标识别 支持向量机 high resolution range profiles targets recognition support vector machines
  • 相关文献

参考文献5

  • 1Vapnik N.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995:1-188.
  • 2Schwenker,Hierarchical F.Support Vector Machines for Multi-class Pattern Recognition[C] //the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied technologies,Brihton,UK,2000.
  • 3孟继成,杨万麟.基于核函数的雷达一维距离像目标识别[J].电子与信息学报,2005,27(3):462-466. 被引量:9
  • 4Donoho D L.Denoising by soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627.
  • 5郭雷,肖怀铁,付强.目标识别中SVM线性可分性研究[J].电子与信息学报,2009,31(3):570-573. 被引量:7

二级参考文献22

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 2Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer, 2000: 123-167.
  • 3Elizondo D. The linear separability problem: Some testing methods [J]. IEEE Trans. on Neural networks, 2006, 17(2): 330-344.
  • 4Ben-Israel A and Levin Y. The geometry of linear separability in data sets [J]. Linear Algebra and Its Applications, 2006, 416(1): 75-87.
  • 5Pranckevicience E, Ho T K, and Somorjai R. Class separability in space reduced by feature selection [C]. The 18th International Conference on Pattern Recognition (ICPR'06), Hong Kong, 2006, Voh3: 254-257.
  • 6David M J Tax and Robert P W Duin. Support vector data description [J]. Machine Learning, 2004, 54(1): 45-66.
  • 7Cortes C and Vapnik V N. Support vector networks [J]. Machine Learning, 1995, 20(3): 273-297.
  • 8Shawe-Taylor J and Cristianini N. Kernel Methods for Pattern Analysis [M]. UK: Cambridge University Press, 2004, chapter 3.
  • 9Patsch G. Benchmarks data sets. Available. http://ida.first. ffaunhofer.de/projects/bench/benchmarks.htm. 2003.7.
  • 10Hastie T, Rosset S, and Tibshirani R, et al.. The entire regularization path for the support vector machine [J]. Journal of Machine Learning Research, 2004, 5(12): 1391-1415.

共引文献14

同被引文献11

  • 1尹慧琳,王磊.D-S证据推理改进方法综述[J].计算机工程与应用,2005,41(27):22-24. 被引量:26
  • 2Haspert K J. Optimum ID sensor fusion for multiple target types[R]. Institute for Defense Analysis(IDA) Document D- 2451, Virginia,2000:1-2.
  • 3: Zedeh L A. Review of Shafer's "A mathematical theory of evi n " de ce [J]. AI Magazine,1984,5(3)-81-83.
  • 4Yager R. On the Dempster-Shafer framework and new combi- nation rule[J]. Information Science, 1987, (41) : 93-137.
  • 5Dezert J. Foundations for a new theory of plausible and para- doxical reasoning[J]. Information and Security Journal, 2002, 12(1):26-30.
  • 6Smarandache F, Dezert J. An introduction to DSm theory of plausible, paradoxist, uncertain, and imprecise reasoning for information fusion [J]. Octogon Mathematical Magazine, 2007,15(2) - 681-722.
  • 7LI Xinde, HUANG Xinhan, WANG Min. Robot Map Build- ing from Sonar Sensors and DSmT[J]. Information I- Securi- ty/An International Journal, 2006,20:104-121.
  • 8Moshiri B, Khalkhali A M, Momeni H R. Designing a home security system using sensor data fusion with DST and DSmT methods[C]//Information Fusion, 10th International Confer- ence on. Quebec City, Canada,2007: 111-116.
  • 9Pannetier B, Dezert J. GMTI and IMINT data fusion for mul- tiple target tracking and classification[C]//Information Fu- sion, 12th International Conference on. Seattle, USA, 2009: 203-210.
  • 10孙殿星,周晓东,王学伟,王宝敏.基于D-S证据理论的复合制导目标识别技术[J].舰船电子工程,2009,29(9):42-46. 被引量:3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部