期刊文献+

Degradation of Chlorpyrifos and Fipronil in Rice from Farm to Fork and Risk Assessment 被引量:7

Degradation of Chlorpyrifos and Fipronil in Rice from Farm to Fork and Risk Assessment
下载PDF
导出
摘要 Degradation of pesticide residues (chlorpyrifos and fipronil) in rice from farm to fork and risk assessment for human health were studied to reveal the magnitude of risks faced by different populations of interest, so that appropriate measures can be taken to control the risks, and to refine and update the human health risk assessment data while helping to determine the maximum residue level (MRL) value and harvest interval. Different dosages and treatments were used in field trials for the harvest residue test. Residue levels of postharvest-applied chlorpyrifos and fipronil during storage, exposure to sunlight, washing and boiling processes (boiled rice) were investigated for brown rice. The dietary exposure evaluation model (DEEM) was employed to estimate acute and chronic risks faced by different populations of interest. Percent of reference dose (POR) and margin of exposure (MOE) were calculated. A positive correlation between pesticide residues and the dosage and application frequency of pesticide was found in the field trials. Risk quotients indicate that multiple applications and double dosages of chlorpyrifos increase the risks to the entire population and prolong exposures to toxic concentrations. The concentration of pesticide residues decreased as a function of time, after sunlight exposure, storage, washing, and boiling processes. 91.6 and 96.16% degradations were achieved at the end of the experimental period for fipronil and chlorpyrifos, respectively. The boiling process played an important role in the degradation of these pesticides. The result of risk assessment to human health showed that harvest residues of chlorpyrifos in rice and acute dietary risks of chlopyrifos were of concern. The acute dietary (food only) risk estimated for chlorpyrifos as percent of acute population adjusted dose (aPAD) was frequently over 100%. The risk faced by boys under the age of 14 was higher than that for girls of the same age. For the subpopulation above age 14, the risk reversed. The chronic dietary risk from food alone showed that dietary exposures with fipronil were below the level of concern for the entire population, including children. The risk faced by rural residents was more serious than that for urbanite residents with the most sensitive populations being children and male residents who faced higher acute dietary risk than the other subpopulation groups. The harvest interval was found to be the critical measure to mitigate risk for all populations for safe rice eating. All risk levels decreased to acceptable levels when the harvest interval was extended to 14 d. To address these risks, a number of measures including reduced application rates (should not be doubled at single application), increased retreatment intervals (longer than 7 d) and extended interval of harvest (at least 14 d) will be needed. The MRL for fipronil in rice is recommended to be 0.01 mg kg 1 in accordance with Codex (ref). Degradation of pesticide residues (chlorpyrifos and fipronil) in rice from farm to fork and risk assessment for human health were studied to reveal the magnitude of risks faced by different populations of interest, so that appropriate measures can be taken to control the risks, and to refine and update the human health risk assessment data while helping to determine the maximum residue level (MRL) value and harvest interval. Different dosages and treatments were used in field trials for the harvest residue test. Residue levels of postharvest-applied chlorpyrifos and fipronil during storage, exposure to sunlight, washing and boiling processes (boiled rice) were investigated for brown rice. The dietary exposure evaluation model (DEEM) was employed to estimate acute and chronic risks faced by different populations of interest. Percent of reference dose (POR) and margin of exposure (MOE) were calculated. A positive correlation between pesticide residues and the dosage and application frequency of pesticide was found in the field trials. Risk quotients indicate that multiple applications and double dosages of chlorpyrifos increase the risks to the entire population and prolong exposures to toxic concentrations. The concentration of pesticide residues decreased as a function of time, after sunlight exposure, storage, washing, and boiling processes. 91.6 and 96.16% degradations were achieved at the end of the experimental period for fipronil and chlorpyrifos, respectively. The boiling process played an important role in the degradation of these pesticides. The result of risk assessment to human health showed that harvest residues of chlorpyrifos in rice and acute dietary risks of chlopyrifos were of concern. The acute dietary (food only) risk estimated for chlorpyrifos as percent of acute population adjusted dose (aPAD) was frequently over 100%. The risk faced by boys under the age of 14 was higher than that for girls of the same age. For the subpopulation above age 14, the risk reversed. The chronic dietary risk from food alone showed that dietary exposures with fipronil were below the level of concern for the entire population, including children. The risk faced by rural residents was more serious than that for urbanite residents with the most sensitive populations being children and male residents who faced higher acute dietary risk than the other subpopulation groups. The harvest interval was found to be the critical measure to mitigate risk for all populations for safe rice eating. All risk levels decreased to acceptable levels when the harvest interval was extended to 14 d. To address these risks, a number of measures including reduced application rates (should not be doubled at single application), increased retreatment intervals (longer than 7 d) and extended interval of harvest (at least 14 d) will be needed. The MRL for fipronil in rice is recommended to be 0.01 mg kg 1 in accordance with Codex (ref).
出处 《Agricultural Sciences in China》 CSCD 2010年第5期754-763,共10页 中国农业科学(英文版)
基金 supported by Jiangsu Pro-vincial Science and Technology Committee, China(BK2006167)
关键词 RICE risk assessment pesticide residue CHLORPYRIFOS FIPRONIL rice, risk assessment, pesticide residue, chlorpyrifos, fipronil
  • 相关文献

参考文献7

二级参考文献79

共引文献142

同被引文献86

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部