期刊文献+

一种基于基追踪压缩感知信号重构的改进算法 被引量:23

Improved algorithm based basis pursuit for compressive sensing reconstruction
下载PDF
导出
摘要 压缩感知(CS)理论是在已知信号具有稀疏性或可压缩性的条件下,对其进行数据采集、编解码的新理论。而含噪信号的重构是压缩感知理论研究的关键技术,基追踪算法(BP)是比较成熟的信号重构算法。对BP及BPDN算法(基追踪去噪算法)进行了MATLAB仿真分析,并通过对算法的改进,扩展了BP算法的应用范围,使其在脉冲噪声条件下重构信号。然后与经典BP算法进行了仿真对比,验证了在脉冲噪声干扰条件下,改进算法计算速度相对原算法复杂度降低,而且能够比较准确地重构信号。 Compressed sensing(CS)theory is a novel data collection and coding theory under the condition that signal is sparse or compressible.The recovery for sparse signal is the key technique in compressed sensing.Technique which is commonly used in this setting is the basis pursuit(BP).With the Matlab language,BP and BPDN(Basis Pursuit Denoising)is simulated and calculated.The modified basis pursuit denoising enlarges its application.It can reconstruct a string signal from underdetermined noisy measurements,in which the noise is not an impulse noise.Then we compare the modified basis pursuit denoising with the original and verify that the modified algorithm can reconstruct signal from impulse noise more quickly.
出处 《电子测量技术》 2010年第4期38-41,共4页 Electronic Measurement Technology
关键词 压缩感知 基追踪 信号重构 脉冲噪声 compressed sensing basis pursuit reconstruct signal impulse noise
  • 相关文献

参考文献11

  • 1DONOHO D L.Compressed sensing[J].IEEE Trans.on Information Theory,2006,52(4):1289-1306.
  • 2CANDèS E.Compressive sampling[C].Proceedings of the International Congress of Mathematicians,Madrid,Spain,2006,3:1433-1452.
  • 3CANDèS E J,TAO T.Near optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans.Info.Theory.2006,52(12):5406-5425.
  • 4CANDèS E,ROMBERG J,TERENCE T.Robust uncertainty princi-ples:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans.on Information Theory,2006,52(2):489-509.
  • 5CHEN S S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 6DONOHO D L,TSAIG Y.Extensions of compressed sensing[J].Signal Processing.2006,86(3):533-548.
  • 7CANDèS E J,ROMBERG J.Practical signal recovery from random projections[OL].http://www.acm.caltech.edu/-emmanuel/papers/PracticalRecovery.pdf.
  • 8石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:713
  • 9周宏潮.基于稀疏参数模型及参数先验的图像分辨率增强方法研究[D].长沙:国防科技大学,2005.
  • 10FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Processing,2007,1(4):586-598.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献715

同被引文献163

引证文献23

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部