一类积分算子的性质及凸阶估计
A Class of Integral Operators Preserving Properties and Estimate of Convex Rank
摘要
主要研究一类积分算子的性质,并给出了该算子的凸阶估计.
This paper mainly considers a class of integral operators preserving certain geometric properties,and obtains its estimate of convex rank.
出处
《广东工业大学学报》
CAS
1998年第4期74-81,85,共9页
Journal of Guangdong University of Technology
关键词
星形函数
凸形函数
凸阶估计
积分算子
单叶函数
star function
convex function
estimate of star rank
estimate of convex rank
θ-spiral function
参考文献10
-
1Miller S S, Macanu P T. Diffeamtial Subordinations and Univalent Functions.Michigan Math, 1981 ,J28:157-171.
-
2Miller S S, Macanu P T. Ualvalent Solution of Briot - Bouquet Differential Equations. Lecture Notes in Math,1013:292--310.
-
3Eenigenburg P, Miller S S, Reade M O. On a Exiot - Bouquet Differential Subordination. General. Inequalities.1981,3:131 - 134.
-
4丁树森.积分算子的星像阶散与凸像阶数估计[J].哈尔滨工业大学学报,1988,2:131-134.
-
5Mocanu P T,Ripeanu D, Serb I The Order of Starlikeness of Certain Integral Operates. Mathenatical, 1981,(cluj)23(46)2:225-230.
-
6Vahrial S. Some Integral Operators Preserving Certain Geometric Properties. Rev. Rotarafine Math, pure API,1988,1(33) :889-900.
-
7Miller S S, Mcanu P T. On a Class of Spirallike Integral Operatczs. Rev. Roumaine Math, Pure Apple, 1986,31 :225-230.
-
8Miller S S, Moeanu P T. Differtmtial Subordinatopns and Inqualities in the Compex Plane. J. Differential Equations,1987,67:199-210.
-
9Sakaguchi K.On a Certain Univalent Mapping.J. Math. Soc Japan,1959,2:72-75.
-
10Bulbcaca. Tecdor. Differential ,Subordinatios by Convex Functions.Mathematica, 187, (cluj)29(52) :105-113.
-
1朱玉灿.n阶线性微分从属[J].福州大学学报(自然科学版),1993,21(3):1-7.
-
2张琪.某些解析函数类的单叶半径[J].西安邮电学院学报,1997,2(1):18-22.
-
3侯明书.两个特殊函数族的偏差估计[J].延安大学学报(自然科学版),1998,17(1):8-14.
-
4朱玉灿.微分方程解析解的从属关系[J].福州大学学报(自然科学版),1996,24(5):14-19.
-
5高安喜,贺兴时.满足条件Re{f(z)/z}>0的函数的开始n次多项式问题[J].西北纺织工学院学报,1993,7(3):202-205.
-
6高安喜.星形函数的前n次多项式问题[J].宝鸡文理学院学报(自然科学版),1999,19(1):19-22.
-
7朱玉灿.由Ruscheweyh导数定义的某些解析函数类[J].福州大学学报(自然科学版),1997,25(4):1-6.
-
8张琪.某些ρ级星形函数和凸形函数的系数[J].陕西师范大学学报(自然科学版),1997,25(2):25-27.
-
9王东东,张汉杰,梁庆文.等几何修正准凸无网格法[J].计算力学学报,2016,33(4):605-612. 被引量:9