摘要
无线传感器网络资源有限,信息量大,通常采用分簇压缩减少传输量。针对传感器网络中的小波压缩,提出了一种基于相关区域自组织的成簇算法。该算法利用实际区域数据的相关性进行分簇,在簇头进行小波数据压缩的同时进行相关性检测,动态调整簇结构,保证簇内节点的相关性较好;同时在Sink分析簇间节点数据相关性,形成相关性好的大规模簇,进一步提高较长时间内的压缩效率。理论分析和实验仿真表明,该算法能尽可能地利用节点数据的时间和空间相关性去除冗余数据,提高小波数据压缩效率,降低了网络的能耗。
In view of limited resources and amounts of data in Wireless Sensor Network(WSN),clustering compressions are always employed to reduce transmission packets.Based on the regional relevance,a self-organized clustering algorithm was proposed for the wavelet compression in sensor network.The algorithm used the correlation of actual regional data for clustering.Actually,during the wavelet data compression procedure,the data correlation was detected in the cluster head,so that to insure better correlation and adjust the clusters structure.Meanwhile,data dependence among the nodes was analyzed in Sink,to form large-scale clusters with better relevance,so that to improve the efficiency of wavelet compression in a long period.Theoretical and experimental results show that the proposed algorithm can eliminate the data redundancy by using temporal and spatial correlation as much as possible,improve the efficiency of wavelet data compression,and reduce network energy consumption.
出处
《计算机应用》
CSCD
北大核心
2010年第3期729-732,共4页
journal of Computer Applications
关键词
无线传感器网络
相关性
成簇
小波压缩
Wireless Sensor Network(WSN)
correlation
clustering
wavelet compression