期刊文献+

无线传感器网络中基于区域相关性的自组织成簇算法 被引量:3

Self-organized clustering algorithm based on regional relevance in wireless sensor network
下载PDF
导出
摘要 无线传感器网络资源有限,信息量大,通常采用分簇压缩减少传输量。针对传感器网络中的小波压缩,提出了一种基于相关区域自组织的成簇算法。该算法利用实际区域数据的相关性进行分簇,在簇头进行小波数据压缩的同时进行相关性检测,动态调整簇结构,保证簇内节点的相关性较好;同时在Sink分析簇间节点数据相关性,形成相关性好的大规模簇,进一步提高较长时间内的压缩效率。理论分析和实验仿真表明,该算法能尽可能地利用节点数据的时间和空间相关性去除冗余数据,提高小波数据压缩效率,降低了网络的能耗。 In view of limited resources and amounts of data in Wireless Sensor Network(WSN),clustering compressions are always employed to reduce transmission packets.Based on the regional relevance,a self-organized clustering algorithm was proposed for the wavelet compression in sensor network.The algorithm used the correlation of actual regional data for clustering.Actually,during the wavelet data compression procedure,the data correlation was detected in the cluster head,so that to insure better correlation and adjust the clusters structure.Meanwhile,data dependence among the nodes was analyzed in Sink,to form large-scale clusters with better relevance,so that to improve the efficiency of wavelet compression in a long period.Theoretical and experimental results show that the proposed algorithm can eliminate the data redundancy by using temporal and spatial correlation as much as possible,improve the efficiency of wavelet data compression,and reduce network energy consumption.
作者 李玮 胡玉鹏
出处 《计算机应用》 CSCD 北大核心 2010年第3期729-732,共4页 journal of Computer Applications
关键词 无线传感器网络 相关性 成簇 小波压缩 Wireless Sensor Network(WSN) correlation clustering wavelet compression
  • 相关文献

参考文献12

  • 1LINDSEY S,RAGHAVENDRA C,SIVALINGAM K M.Data gathering algorithms in sensor networks using energy metrics[J].IEEE Transactions on Parallel and Distributed Systems,2002,13(9):924-935.
  • 2李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报,2003,14(10):1717-1727. 被引量:621
  • 3CHEN M O,FOWLER M L.Data compression trade-offs in sensor networks[C]// Proceedings of the SPIE Conference on Mathematics of Data/Image Coding,Compression,and Encryption.Denver,CO:SPIE,2004,5561:96-107.
  • 4成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.
  • 5周四望,林亚平,张建明,欧阳竞成,卢新国.传感器网络中基于环模型的小波数据压缩算法[J].软件学报,2007,18(3):669-680. 被引量:41
  • 66]HEINZELMAN W,CHANDRAKASAN A,BALAKRISHNAN H.Energy-efficient communication protocol for wireless microsensor networks[C]// Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.Washington,DC:IEEE Computer Society,2000:3005-3014.
  • 7HEINZELMAN W B,CHANDRAKASAN A P,BALAKRISHNAN H.An application-Specific protocol architecture for wireless microsensor networks[J].IEEE Transactions on Wireless Communications,2002,1(4):660-670.
  • 8XU Y,HEIDEMANN J,ESTRIN D.Geography-informed energy conservation for Ad Hoc routing[C]// Proceedings of the 7th Annual International Conference on Mobile Computing and Networking.Rome,Italy:[s.n.],2001:70-84.
  • 9XU N,RANGWALA S,CHINTALAPUDI K K,et al.A wireless sensor network for structural monitoring[C]// Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems.New York:ACM Press,2004:13-24.
  • 10GANESAN D,ESTRIN D,HEIDEMANN J.Dimensions:Why do we need a new data handling architecture for sensor networks?[J].SIGCOMM Computer Communication Review,2003,33(1):143-148.

二级参考文献42

  • 1Ganesan D, Govindan R, Shenker S, Estrin D. Highly-Resilient, energy-efficient multipath muting in wireless sensor networks.Mobile Computing and Communications Review, 2002,1(2):295-298.
  • 2Braginsky D, Estrin D. Rumor routing algorithm for sensor networks. In: Raghavendra CS, ed. Proceedings of the 1st Workshop on Sensor Networks and Applications. New York: ACM Press, 2002.
  • 3Girod L, Bychkovskiy V, Elson J, Estrin D. Locating tiny sensors in time and space: A case study. In: Manoli Y, Kim KS, eds.Proceedings of the International Conference on Computer Design. Piscataway: IEEE Press, 2002. 195-204.
  • 4Bulusu N, Estrin D, Girod L, Heidemann J. Scalable coordination for wireless sensor networks: Self-Configuring localization systems. 2001. http://lecs.cs.ucla.edu/-bulusu/papers/Bulusu01c.html.
  • 5Cerpa A, Estrin D. ASCENT: Adaptive self-configuring sensor networks topologies. In: Kermani P, ed. Proceedings of the 21st International Annual Joint Conference of the IEEE Computer and Communications Societies. Piscataway: IEEE Press, 2002.101-111
  • 6Elson J. Time synchronization services for wireless sensor networks. In: Kumar V, ed. Proceedings of the 15th International Parallel & Distributed Processing Symposium. 2001. Los Alamitos: IEEE Computer Press, 2001. 1965-1970.
  • 7Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor networks. In: Kermani P, ed. Proceedings of the 21st International Annual Joint Conference of the IEEE Computer and Communications Societies. Piscataway: IEEE Press,2002.91-100.
  • 8Heidemann J, Silva F, Intanagonwiwat C. Building efficient wireless sensor networks with low level naming. In: Marzullo K, ed.Proceedings of the 18th ACM Symposium on Operating System Principles. New York: ACM Press, 2001. 146-159.
  • 9Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F. Directed diffusion for wireless sensor networking. ACM/IEEE Transactions on Networking, 2002, 11(1):2-16.
  • 10Liu J, Cheung P, Ouibas L, Zhao F. A dual-space approach to tracking and sensor management in wireless sensor networks. In:Reghavendrv CS, ed. Proceedings of the ACM International Workshop on Wireless Sensor Networks and Applications. New York:ACM Press, 2002. 162-173.

共引文献658

同被引文献17

  • 1张洁颖,孙懋珩,王侠.基于RSSI和LQI的动态距离估计算法[J].电子测量技术,2007,30(2):142-145. 被引量:59
  • 2叶宁,王汝传.传感器网络中一种基于估计代价的数据聚合树生成算法[J].电子学报,2007,35(5):806-810. 被引量:7
  • 3Tolle G, Polastre J, Szewczyk R, et al. A macroscope in the redwoods[C]//Proceedings of ACM SenSys, 2005 : 51-63.
  • 4Kotsilieris T, Karetsos G T. A mobile agent enabled wireless sensor network for river water monitoring[C]//Proeeedings of the Fourth International Conference on Wireless and d Mobile Communications, 2008:346-351.
  • 5Jafai R, Encarnacao A, Zahoory A, et al. Wireless sensor net- works for health monitoring [C]//Proceedings of Mobi Quitous, 2005 : 479-481.
  • 6Yoon S, Shahabi C. The clustered aggregation(CAG) tech- nique leveraging spatial and temporal correlations in wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2007,3(1) : 1-39.
  • 7Chu D, Deshpande A, Hellerstein J M, et al. Approximate da- ta collection in sensor networks using probabilistic models [C]//Proeeedings of the 22nd International Conference on Data Engineering, 2006 : 48-48.
  • 8Lazaridis I, Mehrotra S. Capturing sensor-generated time se- ries with quality guarantees[C]//Proceedings of 19th Interna- tional Conference on Data Engineering, 2003 : 429-440.
  • 9Tulone D, Madden S. An energy efficient querying framework in sensor networks for detecting node similarities [C]//Pro ceedings of ACM MSWiM, 2006:291-300.
  • 10Gupta H, Navda V, DAS S, et al. lated data in sensor networks[J]. sor Networks,2008,4(1) : 1-31.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部