期刊文献+

时延受限组播路由的最短路径加速算法求解 被引量:2

Delay-constrained multicast routing algorithm based on optimized Floyd shortest path algorithm
下载PDF
导出
摘要 分析了时延受限的Steiner树问题,总结了在构建组播树过程中的代价和计算复杂度变化规律,并根据实际网络环境,从优化最短路径出发,提出了一种基于优化最短路径的时延受限组播路由算法AOSPMPH。该算法以MPH算法为基础,利用Floyd最短路径优化算法求出节点对之间的最短路径,选择满足时延要求的最小代价路径加入组播树,进而产生一棵满足时延约束的最小代价组播树。仿真结果表明,AOSPMPH不但能正确地构造时延约束组播树,而且其代价和计算复杂度与其他同类算法相比得到了优化。 An important issue in multicast communication is how to create an efficient and robust Steiner tree through using multicast routing algorithm.Based on the analysis of delay-constrained Steiner tree,the cost and computational complexity when constructing a multicast tree,starting from the practical requirements and optimizing shortest paths,a new algorithm named Algorithm of Optimizing Shortest Path based on MPH (AOSPMPH) was proposed.On the basis of Minimum cost Paths Heuristic (MPH),the proposed algorithm found the shortest path between nodes using optimized Floyd shortest path algorithm and selected the minimum cost path to meet the requirements of delay constraint to add into the multicast tree.By this way,a low cost multicast tree could be constructed.The simulation results show that AOSPMPH not only can construct delay-constrained multicast tree correctly,but also is of less cost and lower computational complexity than those of many other multicast algorithms.
出处 《计算机应用》 CSCD 北大核心 2010年第5期1176-1178,1182,共4页 journal of Computer Applications
基金 河南省自然科学基金资助项目(2008B520027) 河南省高等学校青年骨干教师资助计划项目(2006104)
关键词 STEINER树 MPH算法 Floyd最短路径优化 启发式算法 组播通信 Steiner tree Minimum cost Paths Heuristic (MPH) algorithm optimum of shortest path algorithm devised by Floyd heuristic algorithm multicast communication
  • 相关文献

参考文献10

  • 1KOMPELLA V P,PASQUAL J C,POLYZOS G C.Multicast rouling for multimedia communication[J].IEEE/ACM Transactions on Networking,1993,1(3):286-292.
  • 2WINTER P.Steiner problem in networks:A survey[J].Network,1987,17(2):129-167.
  • 3KOU L,MARKOWSKY G,BERMAN L.A fast algorithm for Steiner trees in graphs[J].Acta Informatica,1981,15(2):141-145.
  • 4WAXMAN B M.Routing of multipoint connection[J].IEEE Journal on Selected Areas in Communication,1988,6(9):1617-1622.
  • 5RAYWARD-SMITH V J,CLARE A.On finding Steiner vertices[J].Networks,1986,16(3):283-294.
  • 6周灵,孙亚民.基于MPH的时延约束Steiner树算法[J].计算机研究与发展,2008,45(5):810-816. 被引量:11
  • 7李元臣,刘维群.基于共享边的时延约束组播路由算法[J].计算机应用,2009,29(11):2901-2903. 被引量:6
  • 8李洪波,王茂波.Floyd最短路径算法的动态优化[J].计算机工程与应用,2006,42(34):60-63. 被引量:28
  • 9PARSA M,ZHU QING,GARCIA-LUNA-ACEVES J J.An iteralive algorithm for delay-constrained minimum-cost multicasting[J].IEEE/ACM Transactions on Networking,1998,6(4):461-474.
  • 10蒋廷耀,李庆华.An Improved Multicast Routing Algorithm[J].Journal of Shanghai University(English Edition),2004,8(3):317-321. 被引量:1

二级参考文献36

共引文献42

同被引文献17

  • 1余萍.基于多QoS约束的多播路由算法研究[J].计算机科学,2007,34(9):42-43. 被引量:2
  • 2AISSA M,MNAOUER A B. A new delay-constrained algorithm for multicast routing tree construction[J].International Journal of Communication Systems,2004,(10):985-1000.
  • 3LEE H,YOUN C. Scalable multicast routing algorithm for delay-variation constrained minimum-cost tree[A].Washington,DC:IEEE Computer Society,2000.1343-1347.
  • 4KOMPELLA V P,PASQUAL J C,POLYZOS G C. Multicast routing for multimedia communication[J].IEEE/ACM Transactions on Networking,1993,(03):286-292.
  • 5WAXMAN B. Routing of multipoint connections[J].IEEE Journal on Selected Areas in Communications,1988,(09):1617-1622.
  • 6BAUER F,VARMA A. ARIES:A rearrangeable inexpensive edgebased on-line Steiner algorithm[J].IEEE Journal on Selected Areas in Communications,1997,(03):382-397.
  • 7陈琳.基于Q0S约束的多播路由问题研究[D]武汉:武汉大学,2005.
  • 8ZHU Q,PARSA M C,GARCIA-LUNA-ACEVES J J. A sourcebased algorithm for delay-constrained minimum-cost multicasting[A].Washington,DC:IEEE Computer Society,1995.377-385.
  • 9李昌兵,杜茂康,胡华.结合分布式与集中式特点的动态多播路由算法[J].计算机系统应用,2008,17(6):62-66. 被引量:4
  • 10郝自军,何尚录.最短路问题的Floyd算法的若干讨论[J].重庆工学院学报(自然科学版),2008,22(5):156-159. 被引量:18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部