期刊文献+

基于加权的不完备非负矩阵分解算法 被引量:2

Weighted non-negative matrix factorization for incomplete dataset
下载PDF
导出
摘要 非负矩阵分解(NMF)作为一种特征提取与数据降维的新方法,相较于一些传统算法,具有实现上的简便性,分解形式和分解结果上的可解释性等优点。但当样本矩阵不完备时,NMF无法对其进行直接分解。提出一种基于加权的不完备非负矩阵分解(NMFI)算法,该算法在处理不完备样本矩阵时,先采用随机修复的方法降低误差,再利用加权来控制各样本的权重,尽量削弱缺损数据对分解结果产生的干扰。此外,NMFI算法使用区域权重来进一步减少关键区域数据缺损对分解产生的影响。实验结果表明,NMFI算法能有效提取样本中残余数据的信息,减少缺损数据对分解结果的影响。 Nonnegative Matrix Factorization (NMF) is a new method for feature extraction and data dimension reduction.It has an advantage over traditional algorithms in the simple implementation and the interpretability of factorization form and factorization result.But NMF could not decompose the samples matrix when it is incomplete.However,when dealing with incomplete dataset,NMFI (Weighted Non-negative Matrix Factorization for Incomplete Dataset) made use of random repair to decrease the error and weighted method to control weights of the samples,which could weaken the disturbance of missing data as much as possible.In addition,NMFI used regional weight for further reducing the impact of missing data in critical region.The experimental results demonstrate that NMFI can effectively extract information from retained data and reduce the influence of missing data.
出处 《计算机应用》 CSCD 北大核心 2010年第5期1280-1283,1286,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60805042)
关键词 非负矩阵分解 不完备数据集 随机修复 加权 区域权重 Nonnegative Matrix Factorization (NMF) incomplete dataset random repair weighting regional weight
  • 相关文献

参考文献8

  • 1LEE D D,SEUNG H S.Learning the parts of objects by normegative matrix factorization[J].Nature,1999,401 (6755):788-791.
  • 2XU WEI,LIU XIN,GONG YIHONG.Document clustering based on non-negative matrix factorization[C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM Press,2003:267-273.
  • 3GUILLAMET D,VITRIA J.Non-negative matrix factorization for face recognition[C]// Proceedings of the 5th Catalonian Conference on AI:Topics in Artificial Intelligence,LNCS 2504.Berlin:Springer-Verlag,2002:336-344.
  • 4VIRTANEN T.Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(3):1066-1074.
  • 5DONOHO D,STODDEN V.When does nonnegative matrix faetorization give a correct decomposition into parts?[C]// Proceedings of the 17th Annual Conference Neural Information Processing Systems.Cambridge,MA,USA:MIT Press,2003:1141-1148.
  • 6LEE D D,SEUNG H S.Algorithms for non-negative matrix factorization[C]// Advances in Neural Information Processing Systems.Cambridge,MA,USA:MIT Press,2001,13:556-562.
  • 7CAO BIN,SHEN DOU,SUN JIAN-TAO,et al.Detect and track latent factors with online nonnegative matrix factorization[C]//Proceedinga of the 20th International Joint Conference on Artificial Intelligonce.San Francisco,CA,USA:Morgan Kaufmann Publishers,2007:2689-2694.
  • 8KLINGENBERG B,CURRY J,DOUGHERTY A.Non-negative matrix factorization:lll-poeedness and a geometric algorithm[J].Pattern Recognition,2009,42(5):918-928.

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部