期刊文献+

一个具有寄生虫病感染和恢复的捕食模型(英文) 被引量:3

A Prey-Predator System with Parasitic Infection and Recovery
原文传递
导出
摘要 本文假设感染的食饵有恢复率和对捕食者有收获,研究了一个对部分食饵和全部捕食者具有寄生虫病感染的捕食模型.用定性理论证明了边界和正平衡点的稳定性.结论表明恢复率和收获率对正平衡点的稳定性有影响. By introducing recovery rate in the infective prey and harvest for predator, this paper analyzes a prey-predator system in which some members of the prey population and all predators are subjected to infection by a parasite. The stability of the boundary equilibria the interior equilibrium point is discussed. Our results indicate that the recovery rate and the harvest have effects on the stability of the interior equilibrium.
出处 《生物数学学报》 CSCD 北大核心 2010年第1期1-5,共5页 Journal of Biomathematics
基金 National Natural Science Foundation of(10971037)
关键词 食饵-捕食者 徽生物寄生 稳定性 边界平衡点 正平衡点 Prey-predator Micro-parasite Stability Boundary equilibrium Positive equilibrium
  • 相关文献

参考文献2

二级参考文献15

  • 1Abrams P A.The fallacies of "ratio-dependent "predation "[J].Ecology,1994,5,1842-1850.
  • 2Arditi R,Ginzburg L,R.Coupling in predator-prey dynamics:ratio-dependence[J].J Theo Biol,1989,139,311-326.
  • 3Arditi R,Ginzburg L R,Akcakaya H R.Variation in plankton densities among lakes:a case fraction dependent models[J].American Natrualist,1991,138,1287-1296.
  • 4Freedman H I.A model of predator -prey dynamics as modified by the action of parasite[J].Math Biosci,1990,99,143-155.
  • 5Haque M,Chattopadhyay J.Influences of non-linear incidence rate in an eco-epidemiological model of the Salton Sea[J].Non-linear Studies,2003,10(4):273-388.
  • 6Hale J.Ordinary Differential Equations[M].Krieger Publ.Co.Malabar,1980.
  • 7Hamilton W D,Axelrod R,Tanese R.Sexual reproduction as an adaptation to resist parasite(a review,Proc.Of the National Academy of Sciences (USA),1990,87,3566-3573.
  • 8Hsu S B,Hwang T W,Kuang Y.Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system[J].J Math Biol,2001,42,490-506.
  • 9Kuang Y,Bertta E.Global qualitative analysis of a ratio-dependent predator-prey system[J].J Math Biol,1998,36,389-406.
  • 10Sotomayor J.Generic bifurcations of dynamical systems.In Dynamical System,M.M.Peixoto (ed),(pp.549-560).,Academic Press,New York.1973.

共引文献20

同被引文献27

  • 1Debasis Mukherjee.Persistence and global stability of a population in a polluted environment with delay[J]. Journal of Biological Systems,2002,10(3):225-232.
  • 2Liu B,ZhangY J,Chen L S.Dynamic complexities of a Holling I predator-preymodel concerning periodic biological and chemical control[J].Chaos,Solitons and Fractals,2004,22(1):123-134.
  • 3Freedman H J.Graphical stability,enrichment,and pest control by a natural enemies[J].Math Biosci,1976, 31:207-225.
  • 4Goh B S.Management and Analysis of Biological Populations[M].Am sterdam,Oxford,NY:Elaevier Scientific Publishing Company,1980.
  • 5Zhang Hong,XuW eijian,Chen Lansun.A impulsive infective transmission SI model for pest control[J]. Mathematical Methods in the Applied Sciences.2007,30(10):1170-1172.
  • 6Kuang Yang.Delay Differential Equation with Application in Population Dynamics[M].Academic Press, NY,1987,67-70.
  • 7Jianjun Jiao,Wen Long,Lansun Chen.A single stage-structured population model with mature individuals in a polluted environment and pulse input of environmental toxin[J].Nonlinear Analysis:Real World Applications,2009,10:3073-3081.
  • 8httD://www.chinacdc.cn/tis{/fdcrbbg/201211/t20121113-71834.htm.
  • 9P.D. O'Neill, C.H. Wen. Modeling and inference for epidemic models featuring non-linear infection pressure [J]. Mathematical Biosciences, 2012(238): 38-48.
  • 10陆征一,周义昌.数学生物学进展[M].2006:140-145.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部