期刊文献+

A New Classifier for Facial Expression Recognition:Fuzzy Buried Markov Model 被引量:4

A New Classifier for Facial Expression Recognition:Fuzzy Buried Markov Model
原文传递
导出
摘要 To overcome the disadvantage of classical recognition model that cannot perform well enough when there are some noises or lost frames in expression image sequences, a novel model called fuzzy buried Markov model (FBMM) is presented in this paper. FBMM relaxes conditional independence assumptions for classical hidden Markov model (HMM) by adding the specific cross-observation dependencies between observation elements. Compared with buried Markov model (BMM), FBMM utilizes cloud distribution to replace probability distribution to describe state transition and observation symbol generation and adopts maximum mutual information (MMI) method to replace maximum likelihood (ML) method to estimate parameters. Theoretical justifications and experimental results verify higher recognition rate and stronger robustness of facial expression recognition for image sequences based on FBMM than those of HMM and BMM. To overcome the disadvantage of classical recognition model that cannot perform well enough when there are some noises or lost frames in expression image sequences, a novel model called fuzzy buried Markov model (FBMM) is presented in this paper. FBMM relaxes conditional independence assumptions for classical hidden Markov model (HMM) by adding the specific cross-observation dependencies between observation elements. Compared with buried Markov model (BMM), FBMM utilizes cloud distribution to replace probability distribution to describe state transition and observation symbol generation and adopts maximum mutual information (MMI) method to replace maximum likelihood (ML) method to estimate parameters. Theoretical justifications and experimental results verify higher recognition rate and stronger robustness of facial expression recognition for image sequences based on FBMM than those of HMM and BMM.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2010年第3期641-650,共10页 计算机科学技术学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No. 60673190
关键词 facial expression recognition fuzzy buried Markov model specific cross-observation dependency cloud distribution maximum mutual information facial expression recognition, fuzzy buried Markov model, specific cross-observation dependency, cloud distribution, maximum mutual information
  • 相关文献

参考文献18

  • 1Sun W, Ruan Q Q. Two-dimension PCA for facial expression recognition. In Proc. IEEE International Conference on Signal Processing (ICSP2000), Guilin, China, Nov. 11-14, 2006, Vol.3.
  • 2Tsai D M, Lai S C. Defect detection in periodically patterned surfaces using independent component analysis. Pattern Recognition, 2008, 41(9): 2812-2832.
  • 3Sang N, Wu J W, Yu K. Local Gabor fisher classifier for face recognition. In Proc. the 4th International Conference on Image and Graphics, Chengdu, China, Aug. 22-24, 2007, pp.620-626.
  • 4Pardas M, Bonafonte A. Facial animation parameters extraction and expression detection using Hidden Markov Models. Signal Process: Image Commun., 2002, 17(9): 675-688.
  • 5Aleksic P S, Katsaggelos A K. Automatic facial expression recognition using facial animation parameters and multistream HMMs. IEEE Transactions on Information Forensics and Security, 2006, 1(1): 3-11.
  • 6Zhou X X, Huang X S, Xu B, Wang Y S. Real-time facial expression recognition based on boosted embedded hidden Markov model. In Proc. International Conference on Image and Graphics, Hong Kong, China, Dec. 18-20, 2004, pp.290- 293.
  • 7Ma L, Chelberg D, Celenk M. Spatio-temporal modeling of facial expressions using Gabor wavelets and hierarchical Hidden Markov Models. In Proc. IEEE International Conference on Image Processing (ICIP2005), Genoa, Italy, Sept. 11-14, 2005, Vol. 2, pp.57-60.
  • 8Bilmes J A. Buried Maxkov models: A graphical-modeling approach to automatic speech recognition. Computer Speech and Language, 2003, 17(2/3): 213-231.
  • 9Tarihi M R, Teheri A, Bababeyk H. A new method for fuzzy hidden Markov models in speech recognition. In Prec. IEEE International Conference on Emerging Technologies (ICET2005), Islamabad, Pakistan, Sept. 17-18, 2005, pp.36- 40.
  • 10Zhu Y F, Dai C H, Chen W R, Lin J H. Adaptive probabilities of crossover and mutation in genetic algorithms based on cloud model. Journal of Computational Information Systems, 2005, 1(4): 671-678.

同被引文献79

  • 1刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 2薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 3Kotsia I, Pitas I. Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines[J]. IEEE Transactions on Image Processing, 2007,16(1):172-187.
  • 4Mehrabian A,Russell J A. An Approach to Environmental Psychology[M]. Cambridge: MIT Press, 1974.
  • 5Ekman P,Friesen W V. Facial Action Coding System: A Technique for the Measurement of Facial Movement[M]. Palo Alto: Consulting Psychologists Press, 1978.
  • 6Suwa M, Sugie N, Fujimora K. A Preliminary Note on Pattern Recognition of Human Emotional Expression [A]//Proceedings of the 4th International Joint Conference on Pattern Recognition [C]. Kyoto,Japan: Institute of Electrical and Electronics Engineers, 1978: 408-410.
  • 7Mase K, Pentlad A. Recognition of Facial Expression from Opti cal Flow[J]. IEICE Transactions, 1991, E74 ( 10 ) : 3474-3483.
  • 8Pantic M,Rothkrantz L. Automatic Analysis of Facial Expres sions:The State of the Art[J]. IEEE Transactions on PAMI, 2000,22(12), 1424-1445.
  • 9Fasel B, Luettin J. Automatic Facial Expressions Analysis: A Survey[J]. Pattern Recognition, 2003,36 (1) ; 259-275.
  • 10Cohen I, Cozman G. Fablo, SEBE Nicu, et al. Semisupcrvised I.earning of Classifiers: Theory, Algorithms, and Their Applica tion to Human-Computer Interaction[J]. IEEE Transactions on Pami, 2004,26 (12) : 1553-1567.

引证文献4

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部