期刊文献+

Wick型随机非线性Schrdinger方程的白噪声泛函解(英文) 被引量:7

White Noise Functional Solutions of Wick-type Stochastic NLS Equations
下载PDF
导出
摘要 本文对变系数非线性Schrdinger方程通过白噪声扰动得到的Wick型随机非线性Schrdinger方程进行了研究,利用Hermite变换和Painlevé展开方法给出了该方程的白燥声泛函解. In this paper,the perturbation versions of variable coefficient NLS equations by white noise,Wick-type stochastic NLS equations are investigated.The white noise functional solutions and auto-Bcklund transformations are showed by using Hermite transform and Painlevé expansion.
作者 陈彬
出处 《应用数学》 CSCD 北大核心 2010年第2期292-298,共7页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China (10671168,10971180) the Natural Science Foundation of the Jiangsu Province(07-333)
关键词 Wick型随机非线性Schrdinger方程 白噪声泛函解 Hermiter变换 Painlevé展开 Wick-type stochastic NLS equation White noise functional solution Hermite transform Painlevé expansion
  • 相关文献

参考文献10

  • 1Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering[M]. Cambridge:Cambridge University Press, 1991.
  • 2Gao Yitian, Tian Bo. Variable-coefficient unstable nonlinear Schrodinger equation modeling electron beam plasma:auto-Backlund transformaion, soliton-typed and other analytical solutions[J]. Phys Plasmas, 2001,8(1) :67-73.
  • 3Tian Bo, Gao Yitian. Computer algebra, Painlev analysis and the time-dependent-coefficient nonlinear Schrodinger equation[J]. Compu. Math. Appl. ,1996.31(11) :115-119.
  • 4Xie Yingchao. Exact solutions for stochastic KdV equations[J]. Phys. Lett. A, 2003,310(2-3) :161-167.
  • 5Debussche A, Di Menza L. Numerical simulation of focusing stochastic nonlinear Schr6dinger equations [J]. Physica D. , 2002,162(3-4) : 131-154.
  • 6Mann H J. Stochastic mechanics and nonlinear Schrodinger equation[R]. Proceedings of the ⅩⅩⅩ Symposium on Mathematical Physics,Reports on Mathematical Physics, 1999,44(1-2) : 143-148.
  • 7Chen Bin,Xie Yingchao. White noise functional solutions of Wick-type stochastic generalized Hirota-Satsuma coupled KdV equations[J]. J. Comput. Appl. Math. ,2006,197(2) : 345-354.
  • 8Xie Yingchao. An auto-Backlund transformation and exact solutions for Wick-type stochastic generalized KdV equations[J]. J. Phys. A: Math. Gen. ,2004,37(19) :5229-5236.
  • 9Holden H, Φksendal B, Uboe J, et al. Stochastic Partial Differential Equations: a Modeling, White Noise Functional Approach[M]. Berlin: Birhkauser, 19 9 6.
  • 10Benth F E,Gjerde J. A remark on the equivalence between Poisson and Gaussian stochastic partial differential equations[J]. Potential Analysis, 1998,8(2) : 179-193.

同被引文献32

  • 1吴娇,徐英.Wick型随机偏微分复合STO方程的精确解(英文)[J].徐州师范大学学报(自然科学版),2009,27(1):58-62. 被引量:4
  • 2Wenhua Huang. A polynomial expansion method and its application in the coupled Zakharov-Kuznetsov equations[J]. Chaos, Soliton and Fractals, 2006,29:365-369.
  • 3Han Xiu, Xie Yingchao. Hyperbolic white noise functional solutions of Wick-type stochastic compound Kdv-Burgers equations[J]. Chaos Solitions and Fractals, 2009,39(4):1715-1720.
  • 4Kalliatazas G, Xiong J. Stochastic models of environmental pollution[J]. Adv. Appl. Prob., 1994,26(2):377- 403.
  • 5Gjerde J. Two classes of stochastic Dirichlet equations which admit explicit solution formulas[J]. Stochastic Analysis and Related Topics, 1996,5:157-181.
  • 6Benth E, Gjerde J. A remark on the equivalence between Possion and Gaussian stochastic partial differential equations[J]. Potential Analysis, 1998,8(2):179-193.
  • 7Wang M L. Solitary wave solutions for variant Boussinesq equations[J]. Phys. Lett. A, 1995,199:169-172.
  • 8Otwinowski M, Paul R, Laidlaw W G. Exact traveling wave solutions of a class of nonlinear diffusion equations by reduction to a quadrature[J]. Phys. Lett. A, 1988;128(9):483-487.
  • 9Zhou Y B, Wang M L, Wang Y M. Periodic wave solutions to a coupled KdV equations with variable cofficients[J]. Phys. Lett. A, 2003;308:31-6.
  • 10Waditi M. Stochastic Korteweg-de Vries equation[J]. Journal of the Physical Society of Japan, 1983;52(8):2642- 2648.

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部