期刊文献+

带非凸二次约束的二次比式和问题的全局优化算法(英文) 被引量:6

An Efficient Algorithm of Global Optimization for Sum of Quadratic Ratios Problem with Nonconvex Quadratic Constraints
下载PDF
导出
摘要 对带非凸二次约束的二次比式和问题(P)给出分枝定界算法,首先将问题(P)转化为其等价问题(Q),然后利用线性化技术,建立了(Q)松弛线性规划问题(RLP),通过对(RLP)可行域的细分及求解一系列线性规划问题,不断更新(Q)的上下界,从理论上证明了算法的收敛性,数值实验表明了算法的可行性和有效性. In this paper a branch and bound approach is proposed for solving sum of quadratic ratios problem with nonconvex quadratic constraints (P),based on the rectangular partition.Firstly,the problem (P) is converted into an equivalent sum of linear ratios problem with quadratic constrains (Q).Then,utilizing the linear relaxation technique,a liner relaxation programming problem (RLP) about (Q) is established which is solved and provides a lower bound of the optimal value.The proposed algorithm is convergent to the global minimum through the successive refinement of the feasible region and the solution of a series of the linear programming problems.The numerical experiments show the effectiveness and feasibility of the algorithm.
出处 《应用数学》 CSCD 北大核心 2010年第2期438-444,共7页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(10671057)
关键词 全局优化 二次比式和 分枝定界 线性松弛 Sum of quadratic ratios Global optimization Linear relaxation Branch and bound
  • 相关文献

参考文献9

  • 1Sui Y K. The expansion of functions under transformation and its application to optimization, Comput [J]. Methods Appl. Mech. Engrg, 1994,113:253-262.
  • 2Benson H P. On the global optimization of sums of linear fractional functions over a convex Set[J]. Journal of Optimization Theory and Applications,2004,121:19-39.
  • 3Kuno T. A revision of trapexziodal branch and bound algorithm for linear sum of rations problems[J]. Journal of Global Optimization, 2005,33 : 215-234.
  • 4Qu S J, Zhang K C. A global optimization algorithm using parametric linearization relaxation[J]. Applied Mathematics and Computation, 2007,186:763-771.
  • 5Qu S J,Zhang K C. An efficient algorithm for globally minimizing sum of quadratic ratios problem with nonconvex quadrtic constraints[J]. Applied Mathematics and Computation, 2007,189: 1624-1636.
  • 6Freund R W,Jarre F. Sloving the sum-of-ratios problem by an interior-point method[J]. Journal of Global Optimization, 2001,19 : 83-102.
  • 7Shen P P, Duan Y P. A simplicial branch and duality bound algorithm for the sum of convex-convex ratios proplem[J]. Journal of Computational and Applied Mathematics,2009,223:145-158.
  • 8An L T H. Tao P T. A branch and bound method via d. c. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems[J]. Journal of Global Optimization, 1998, 13: 171-206.
  • 9Shen P P, Li X I,Jiao H W. Accelerating method of Global optimization for signomial geometric programming[J]. Journal of Computational and Applied Mathematics,2008,214: 66-77.

同被引文献15

  • 1KONNO H,INORI M.Bond portfolio optimization by bi-linear fractional programming[J].Journal of the Opera-tions Research Society of Japan,1989,32:143-158.
  • 2MAJHI J,JANARDAN R,SMID M,et al.On some geo-metric optimization problems in layered manufacturing[J].Computational Geometry,1999,12:219-239.
  • 3QU S J,ZHANG K C,JI Y.A global optimization algo-rithm using parametric linearization relaxation[J].Ap-plied Mathematics and Computation,2007,186:763-771.
  • 4SHEN P P,LI X A,JIAO H W.Accelerating method ofglobal optimization for signomial geometric programming[J].Journal of Computational and Applied Mathematics,2008,214:66-77.
  • 5FREUND R W,JARRE F.Sloving the sum-of-ratiosproblem by an interior-point method[J].Journal ofGlobal Ptimization,2001,19:83-102.
  • 6BENSON H P.A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem.[J].European Journal of Operational Research,2007,182:597-611.
  • 7WANG Y J,ZHANG K C.Global optimization of nonlin-ear sum of ratios problem[J].Applied Mathematics andComputation1,2004,158:319-330.
  • 8申培萍,刘晓,李卫敏.一类多乘积规划问题的对偶界方法[J].河南师范大学学报(自然科学版),2009,37(1):168-170. 被引量:4
  • 9葛冀川,黄崇超,张明望.分式规划的一种内点算法[J].数学杂志,1998,0(S1):136-140. 被引量:1
  • 10李晓爱,郑凯,申培萍.二次比式和问题的全局优化方法[J].河南师范大学学报(自然科学版),2009,37(4):9-11. 被引量:3

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部