摘要
在本文中,主要研究二级三阶对角隐式Runge-Kutta-Nystrm(DIRKN)方法关于二阶刚性常微分方程的R-稳定性,P-稳定性以及相延迟性质.我们获得了该方法的R-稳定域,并构造了R-稳定的二级三阶、相延迟阶为四阶的DIRKN方法.P-稳定的二级三阶DIRKN方法被证明是不存在的.我们还构造了相延迟阶为6阶和8阶的二级三阶DIRKN方法,但是这些方法不是R-稳定的.这推广了文献中的单对角隐式Runge-Kutta-Nystrm(SDIRKN)方法的相关结果.
In this paper,R-stability,P-stability and dispersive property of two-stage diagonally-implicit Runge-Kutta-Nystrm(DIRKN) methods for stiff second-order ordinary differential equations are discussed.The R-stable regions are obtained,and some R-stable two-stage DIRKN methods of order three and dispersive order four are constructed.It is shown that the P-stable two-stage DIRKN methods of order three do not exist.The two-stage DIRKN methods of order three and dispersive orders six and eight are constructed,but are not R-stable.These extend the corresponding results of the two-stage singly DIRKN methods in some references.
出处
《应用数学》
CSCD
北大核心
2010年第2期450-460,共11页
Mathematica Applicata
基金
Supported by Projects from NSF of China(10571147)
Specialized Research Fund for Doctoral Programof Higher Education of China(20094301110001)
NSF of Hunan Province (09JJ3002)
Hunan Provincial Innovation Foundation for Postgraduate(S2008yjscx02)