期刊文献+

求解二阶刚性微分方程的对角隐式Runge-Kutta-Nystrm方法(英文)

Two-stage Diagonally-Implicit Runge-Kutta-Nystrm Methods for Stiff Second-order Differential Equations
下载PDF
导出
摘要 在本文中,主要研究二级三阶对角隐式Runge-Kutta-Nystrm(DIRKN)方法关于二阶刚性常微分方程的R-稳定性,P-稳定性以及相延迟性质.我们获得了该方法的R-稳定域,并构造了R-稳定的二级三阶、相延迟阶为四阶的DIRKN方法.P-稳定的二级三阶DIRKN方法被证明是不存在的.我们还构造了相延迟阶为6阶和8阶的二级三阶DIRKN方法,但是这些方法不是R-稳定的.这推广了文献中的单对角隐式Runge-Kutta-Nystrm(SDIRKN)方法的相关结果. In this paper,R-stability,P-stability and dispersive property of two-stage diagonally-implicit Runge-Kutta-Nystrm(DIRKN) methods for stiff second-order ordinary differential equations are discussed.The R-stable regions are obtained,and some R-stable two-stage DIRKN methods of order three and dispersive order four are constructed.It is shown that the P-stable two-stage DIRKN methods of order three do not exist.The two-stage DIRKN methods of order three and dispersive orders six and eight are constructed,but are not R-stable.These extend the corresponding results of the two-stage singly DIRKN methods in some references.
出处 《应用数学》 CSCD 北大核心 2010年第2期450-460,共11页 Mathematica Applicata
基金 Supported by Projects from NSF of China(10571147) Specialized Research Fund for Doctoral Programof Higher Education of China(20094301110001) NSF of Hunan Province (09JJ3002) Hunan Provincial Innovation Foundation for Postgraduate(S2008yjscx02)
关键词 二阶微分方程 对角隐式Runge-Kutta-Nystrm方法 P-稳定性 R-稳定性 相延迟阶 Stiff second-order ordinary differential equations Diagonally-implicit-Runge-Kutta-Nystrm methods P-stability R-stability Dispersive order
  • 相关文献

参考文献10

  • 1Sharp P W,Fine J M. R-stable(3,4) singly diagonally implicit Runge-Kutta Nystrom pair of dispersive orders four and six[R]. Toronto :The 1988 Conference on the Numerical Solution of I. V. P's for O. D. Es,1988.
  • 2Van der Houwen P J, Sommeijer B P. Diagonally implicit Runge-Kutta-Nystrom methods for oscillatory problems[J]. SIAM J. Numer. Anal. , 1989,26 :414-429.
  • 3Hairer E, Ncrsett S P,Wanner G. Solving Ordinary Differential Equations Ⅰ: Nonstiff Problems[M]. New York: Springer-Verlag, 1987.
  • 4Sharp P W,Fine J M, Burrage K. Two-stage and three-stage diagonally implicit Runge-Kutta Nystr6m methods of orders three and four[J]. IMA J. Numer. Anal. , 1990,10:489-504.
  • 5Alonso-Mallo I, Cano B, Moreta M J. Stability of Runge-Kutta-Nystrom methods[J]. J. Comput. Appl. Math. , 2006,189 : 120-131.
  • 6Sommeijer B P. A note on a diagonally implicit Runge-Kutta-Nystrom methods[J]. J. Comput. Appl. Math. , 1987,19 :395-399.
  • 7Van Daele M, De Meyer H, Van Hecke T, et al. On a class of P-stable mono-implicit Runge-Kutta- Nystrom methods[J]. Appl. Numer. Math. , 1998,27 : 69-82.
  • 8Franeo J M,Gomez I,Randez L. Four-stage symplectie and P-stable SDIRKN methods with dispersion of high order[J]. Numer. Algor. , 2001,26: 347-363.
  • 9Alonso-Mallo I,Cano B, Moreta M J. Stable Runge-Kutta-Nystr6m methods for dissipative stiff problems [J]. Numer. Algor. ,2006,42 : 193-203.
  • 10Papageorgiou G, Familis I T, Tsitouras C. A P-stable singly diagonally implicit Runge-Kutta Nystrom method[J]. Numer. Algor, 1998,17 : 345-353.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部