期刊文献+

基于检索历史上下文的个性化查询重构技术研究 被引量:12

Personalized Query Reformulation Based on Search Context
下载PDF
导出
摘要 基于检索历史隐式地学习用户偏好是个性化检索研究的热点,而根据用户检索历史重构新的查询输入是其中主要的研究内容。已有的研究在利用检索历史进行查询重构时,通常不区分检索历史中的内容是否与当前查询相关,而是将全部检索历史视为整体,因而使重构后的查询含有较多噪声。该文基于相关词语在上下文中大量共现的特征,将用户历史检索结果的网页摘要作为上下文语境,结合用户点击,选择检索历史中与当前查询共现程度最高的词语重构查询模型。对初始检索结果重排序的实验表明,该方法可以有效地选择相关词语,减少噪声。用p@5和NDCG两种指标评价,比最好的基准系统分别相对提高12.8%和7.2%,比初始排序结果相对提高26.0%和11.4%。 Learning user preference implicitly is a hot research topic for personalized search ,and query model reformulation based on user search history is a key issue. Existing work considers the search history as a whole without distinguishing whether it is relevant to current query, resulting in much noise. In this paper, assuming that the relevant terms tend to co-occurrence in context, we treat each past snippet as a context and reformulate the query by selecting the most relevant terms to the whole query from the user clicks. The experiment results show that the algorithm can select relevant terms and reduce noise. With the evaluation metrics of p@ 5 and NDCG, the system achieves a relative improvement against the best baseline system by 12.8 % and 7.2% respectively, 26.0% and 11.4% against the original ranking.
出处 《中文信息学报》 CSCD 北大核心 2010年第3期55-61,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金重点资助项目(60736044) 国家自然科学基金面上资助项目(60675034) 国家863计划探索类专题资助项目(2008AA01Z144) 语言语音教育部-微软重点实验室开放基金资助(HTT.KLOF.2009020)
关键词 计算机应用 中文信息处理 个性化检索 隐式反馈 查询重构 computer application Chinese information processing personalized web search implicit feedback query reformulation
  • 相关文献

参考文献15

  • 1曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 2Nicholas J.Belkin.Some (what) challenges and grand challenges for information retrieval[J].ACM SIGIR Forum,2008,42(1):47-54.
  • 3Jing Bai,Jian-Yun Nie,Guihong Cao,Hugues Bouchard.Using query contexts in information retrieval[C]//Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval.2007:15-22.
  • 4Xuehua Shen,Bin Tan,ChengXiang,Zhai.Implicit user modeling for personalized search[C]//Proceedings of the 14 th ACM international conference on Information and knowledge management.2005:824-831.
  • 5Yuanhua Lv,Le Sun,Junlin Zhang,Jian-Yun Nie Wan Chen,Wei Zhang.An iterative implicit feedback approach to personalized search[C]//Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics.2006:585-592.
  • 6Sugiyama K,Hatano K,K Yoshikawa M.Adaptive web search based on user profile constructed without any effort from users[C]//Proceedings of the 13th international conference on World Wide Web.2003:675-684.
  • 7Susan Gauch,Jason Chaffee,Alaxander Pretschner.Ontology-based personalized search and browsing[J],Web Intelligence and Agent Systems.2003,1(3-4):219-234.
  • 8Teevan,J.,Dumais,S.T.,& Horvitz,E.(2005).Personalizing search via automated analysis of interests and activites[C]//Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval,2005:449-456.
  • 9Bin Tan,Xuehua Shen,ChengXiang Zhai.Mining long-term search history to improve search accuracy[C]//Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,2006:718-723.
  • 10Lavrenko,V.and Croft,W.B.Relevance-based language models[C]//Proc.24th ACM SIGIR Conf.On Research and Development in Information Retrieval.2001:120-127.

二级参考文献58

  • 1P Ferragina, A Gulli. A Personalized Search Engine Based on Web Snippet Hierarchical Clustering[C]//International World Wide Web Conference, Chiba, 2005. New York, ACM Press, 2005:801-810.
  • 2X Shen, B Tan, CX Zhai. Implicit User Modeling for Personalized Search[C]//Proceedings of the 14th ACM international conference, Bremen, 2005. New York, ACM Press, 2005: 824-831.
  • 3P.A. Chirita, W. Nejdl, R. Paiu, C Kohlsch tter. Using ODP Metadata to Personalize Search[C]//Proceedings of the 28th annual international ACM SIGIR, Salvador, 2005. New York, ACM Press, 2005: 178-185.
  • 4J Teevan, ST Dumais, E Horvitz. Personalizing Search via Automated Analysis of Interests and Aetivities[C]//Proceedings of the 28th annual international ACM SIGIR, Salvador, 2005. New York, ACM Press, 2005: 178-185.
  • 5R. W. White, J. M. Jose, C. J. van Rijsbergen I Ruth ven. A simulated study of implicit feedback models[M]. Springer Berlin/Heidelberg, 2004:311-326.
  • 6Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 7Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 8Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 9Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 10Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.

共引文献398

同被引文献177

引证文献12

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部