摘要
基于检索历史隐式地学习用户偏好是个性化检索研究的热点,而根据用户检索历史重构新的查询输入是其中主要的研究内容。已有的研究在利用检索历史进行查询重构时,通常不区分检索历史中的内容是否与当前查询相关,而是将全部检索历史视为整体,因而使重构后的查询含有较多噪声。该文基于相关词语在上下文中大量共现的特征,将用户历史检索结果的网页摘要作为上下文语境,结合用户点击,选择检索历史中与当前查询共现程度最高的词语重构查询模型。对初始检索结果重排序的实验表明,该方法可以有效地选择相关词语,减少噪声。用p@5和NDCG两种指标评价,比最好的基准系统分别相对提高12.8%和7.2%,比初始排序结果相对提高26.0%和11.4%。
Learning user preference implicitly is a hot research topic for personalized search ,and query model reformulation based on user search history is a key issue. Existing work considers the search history as a whole without distinguishing whether it is relevant to current query, resulting in much noise. In this paper, assuming that the relevant terms tend to co-occurrence in context, we treat each past snippet as a context and reformulate the query by selecting the most relevant terms to the whole query from the user clicks. The experiment results show that the algorithm can select relevant terms and reduce noise. With the evaluation metrics of p@ 5 and NDCG, the system achieves a relative improvement against the best baseline system by 12.8 % and 7.2% respectively, 26.0% and 11.4% against the original ranking.
出处
《中文信息学报》
CSCD
北大核心
2010年第3期55-61,共7页
Journal of Chinese Information Processing
基金
国家自然科学基金重点资助项目(60736044)
国家自然科学基金面上资助项目(60675034)
国家863计划探索类专题资助项目(2008AA01Z144)
语言语音教育部-微软重点实验室开放基金资助(HTT.KLOF.2009020)
关键词
计算机应用
中文信息处理
个性化检索
隐式反馈
查询重构
computer application
Chinese information processing
personalized web search
implicit feedback
query reformulation