期刊文献+

加权移位算子的非游荡性

Nonwandering Property of Weighted Shifts
下载PDF
导出
摘要 以构造的方式,研究了lp(1≤p<∞)空间上的加权移位算子B,当其权序数满足一定条件时,具有非游荡性;证明了它经过一恒等算子扰动后,仍可保持这种特性;进而得到了Hilbert空间上的任一有界线性算子关于非游荡算子的分解理论. With a constructive technique, the nonwandering property ot welgnteo shift D was cnaracterized on sequence space l^p (1≤ p 〈 ∞) , when its weighted sequences satisfies certain conditions. Meanwhile, the perturbation of these operators by an identity operator is still nonwandering. Further- more, every bounded linear operator on Hilbert space can be decompositioned into nonwandering operator.
出处 《佳木斯大学学报(自然科学版)》 CAS 2010年第2期296-299,共4页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金资助项目(90610031)
关键词 超循环算子 加权移位 非游荡算子 hypercyclic operator weighted shift nonwandering operator
  • 相关文献

参考文献9

  • 1H N Salas.Hypercyclic Weighted Shifts[J].Trans Amer.Math Soc,1995,347:993-1004.
  • 2K G Grosse-Erdmann.Hypercyclic and Chaotic Weigted Shifts[J].Studia Math.,2000,139:47-68.
  • 3F Martínez-Giménez,A Peris.Chaos for Back-ward Shift Operators[J].Int.J.of Birfurcation and Chaos,2002,8(12):1703-1715.
  • 4Tian Lixin,Lu Dianchen.The Property of Non-wandering Operator[J].Appl.Math.Mech (English Ed.),1996,17:155-161.
  • 5Zhong guangsheng,Tian Lixin.Nonwandering Property of Operator Semigroup[J].Journal of Jiangsu University (Natural Science Ed.).2005,26(6A):116-119.
  • 6L W Marcoux.Sums and Products of Weighted Shifts[J].Canad.Math.Bull.2001,44:469-481.
  • 7Fukiko Takeo.Chaos and Hypercyclicity for Solution Semigroups to Some Partial Differential Equations[J].Nonlinear Analysis,2005,63:1943-1953.
  • 8H Emamirad,GS Heshmati.Chaotic Weighted Shifts in Bargmann Space[J].J.Math.Anal.Appl.,2005,308 (1):36-46.
  • 9Teresa Bermúdez,Antonio Bonilla,Jose L.Torrea.Chaotic Behavior of the Riesz Trans-forms for Hermite Expansions[J].J.Math.Anal.Appl.,2008,337:702-711.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部