摘要
以构造的方式,研究了lp(1≤p<∞)空间上的加权移位算子B,当其权序数满足一定条件时,具有非游荡性;证明了它经过一恒等算子扰动后,仍可保持这种特性;进而得到了Hilbert空间上的任一有界线性算子关于非游荡算子的分解理论.
With a constructive technique, the nonwandering property ot welgnteo shift D was cnaracterized on sequence space l^p (1≤ p 〈 ∞) , when its weighted sequences satisfies certain conditions. Meanwhile, the perturbation of these operators by an identity operator is still nonwandering. Further- more, every bounded linear operator on Hilbert space can be decompositioned into nonwandering operator.
出处
《佳木斯大学学报(自然科学版)》
CAS
2010年第2期296-299,共4页
Journal of Jiamusi University:Natural Science Edition
基金
国家自然科学基金资助项目(90610031)
关键词
超循环算子
加权移位
非游荡算子
hypercyclic operator
weighted shift
nonwandering operator