摘要
研究了中立型Timoshenko射线方程4t4〔u+λu(x,t-τ)〕+a2ut2-b4u2xt2+c4ux4+Cx,t,u,u(x,σ(t))=f(x,t),(x,t)∈J×R+解的强迫振动性,其中J=(0,L),R+=(0,∞),λ,a,b,c为非负常数,τ>0是常数,u=u(x,t).
The forced oscillation properties are established for solutions of the equations of nuetral type of the from 4t 4 u+λu(x,t-τ) +a 2ut 2-b 4ux 2t 2+c 4ux 4+ Cx,t,u,u(x,σ(t)) =f(x,t),(x,t)∈J×R +,where J=(0,L),R +=(0,∞),λ≥0,a≥0,b≥0,c≥0,τ>0,L>0 are constants and u=u(x,t).
出处
《烟台师范学院学报(自然科学版)》
1998年第3期175-180,共6页
Yantai Teachers University journal(Natural Science Edition)
关键词
泛函偏微分方程
射线方程
振动性
中立型
partial functional differential equation,beam equation,oscillation