期刊文献+

LCV模型在医学图像分割中的应用 被引量:16

Application of LCV Model in Medical Image Segmentation
下载PDF
导出
摘要 针对C-V模型不能充分利用图像局部区域灰度变化信息从而导致难以准确分割灰度不均物体等缺陷,提出一种基于局部区域的C-V(LCV)模型。利用计算局部窗函数内的加权灰度均值来取代全局均值,并加入约束水平集函数为符号距离函数的能量项,从而避免水平集函数的重新初始化。对医学图像的分割结果证明LCV模型在分割灰度不均物体方面优于C-V模型,其分割效率高于LBF模型。 The Chan-Vese(C-V) active contour model utilizes global region information of images,so it is difficult to handle images with intensity inhomogeneity.A Local region-based C-V(LCV) model based on image local region information is proposed,which utilizes the weighted average intensity inside a local window to replace the global average intensity of C-V model.Moreover,the distance penalized energy function is incorporated into it,which makes the expensive re-initialization unnecessary.Experimental results of medical image segmentation show it has a distinctive advantage over C-V model for images with intensity inhomogeneity,and it is more efficient than LBF.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第10期184-186,共3页 Computer Engineering
基金 新疆师范大学青年科研基金资助项目(XJNU0821)
关键词 主动轮廓模型 水平集 C-V模型 LBF模型 图像分割 active contour model level set Chan-Vese(C-V) model LBF model image segmentation
  • 相关文献

参考文献12

  • 1Kass M,Witkin A,Terzopoulos D.Snakes:Active Contour Models[J].International Journal of Computer Vision,1988,2(1):321-331.
  • 2Osher S,Sethian J A.Fronts Propagating with Curvature Dependent Speed:Algorithm Based Hamilton-Jacobi Formulation[J].Journal of Computational Physics,1988,79(1):12-49.
  • 3Caselles V,Kimmel R,Sapiro G.Geodesic Active Contours[J].International Journal of Computer Vision,1997,22(3):61-79.
  • 4Shi Y,Karl W C.Real-time Tracking Using Level Sets[C]//Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:[s.n.],2005:34-41.
  • 5Li Chunming,Xu Chenyang,Gui Changfeng.Level Set Evolution Without Re-initialization:A New Variational Formulation[C]//Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:[s.n.],2005:430-436.
  • 6Chan T,Vese L.Active Contours Without Edges[J].IEEE Trans.on Imag.Proc.,2001,10(2):266-277.
  • 7Vese L,Chan T.A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model[J].International Journal of Computer Vision,2002,50(1):271-293.
  • 8Li Chunming,Kao C Y,Gore J C,et al.Implicit Active Contours Driven by Local Binary Fitting Energy[C]//Proc.of IEEE Conference on Computer Vision and Pattern Recognition.Minnesota,USA:[s.n.],2007:1-7.
  • 9Li Chunming,Kao C Y,Gore J C,et al.Minimization of Region-scalable Fitting Energy for Image Segmentation[J].IEEE Transactions on Image Processing,2008,17(2):1940-1949.
  • 10Piovano J,Rousson M,Papadopoulo T.Efficient Segmentation of Piecewise Smooth Images[C]//Proc.of SSVM'07.Ischia,Italy:[s.n.],2007:709-720.

二级参考文献13

  • 1Sun Sungu. Small Target Detection Using Center-surround Difference with Locally Adaptive Threshold[C]//Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis. Beijing, China: [s. n.]. 2005: 402-407.
  • 2Nelson B N. Automatic Vehicle Detection in Infrared Imagery Using a Fuzzy Inference-based Classification System[J]. IEEE Trans. on Fuzzy Systems, 2001, 9(1): 53-61.
  • 3Abutaleb A S. Automatic Thresholding of Gray-level Pictures Using Two-dimensional Entropy[J]. Computer Vision, Graphics, and Image Processing, 1989, 47(7): 22-32.
  • 4Chan T F, Vese L A. Active Contours Without Edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 5Osher S, Sethian J A. Fronts Propagating with Curvature-dependent Speed: Algorithms Based on Hamilton-jacobi Formulations[J]. Journal of Computational Physics, 1998, (79): 12-49.
  • 6Kass M,Witkin A,Terzopoulos D.Snakes:Active Contour Models[C]//Proceedings of the 1st International Conference on Computer Vision.London:IEEE Computer Society Press,1987:259-268.
  • 7Malladi R,Sethian J,Vemuri A.Shape Modeling with Front Propagation:A Level Set Approach[J].IEEE Transactions on Pattern Analysis Machine Intelligence,1995,17(2):158-175.
  • 8Chan T,Vese L.Active Contours Without Edges[J].IEEE Trans.on Image Processing,2001,10(2):266-277.
  • 9Chan T,Vese L.An Efficient Variational Multiphase Motion for the Munford-shah Segmentation Model[C]//Proceedings of Asilomar Conference on Signals,Systems and Computers.Pacific Grove,CA:[s.n.],2002:490-494.
  • 10Gao Song,Tien D.Image Segmentation and Selective Smoothing by Using Mumford-shah Model[J].IEEE Trans.on Image Processing,2005,14(10):1537-1549.

共引文献19

同被引文献112

引证文献16

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部