期刊文献+

煅烧温度、煅烧时间和Fe^(3+)掺杂量对TiO_2光催化性能的影响 被引量:15

The Effect of Calcination Temperature,Calcination Time and Fe^(3+)-doped Amount on the Photocatalytic Activity of TiO_2
下载PDF
导出
摘要 以钛酸四正丁酯为先驱物,采用溶胶-凝胶法制备了纯TiO2和Fe3+掺杂的纳米TiO2(Fe3+/TiO2)光催化剂,并用XRD、UV-Vis等进行了表征,系统研究了煅烧温度、煅烧时间和Fe3+掺杂量对催化剂在自然光条件下光催化降解甲基橙性能的影响。结果表明,相同煅烧温度下,Fe3+/TiO2的粒径比纯TiO2的粒径小。制备纯TiO2和Fe3+/TiO2的最佳煅烧时间分别为4h和3h,最佳煅烧温度均为773K。适量掺入Fe3+可以显著提高纳米TiO2在自然光条件下的光催化降解活性,Fe3+/TiO2中Fe3+的最佳掺杂量为10.00%,相应的脱色效率为28.37%。 Pure and Fe^3+-doped TiO2 nanoparticle photocatalysts are prepared by the sol-gel method using Ti- (OC4 H9 )4 as precursor, and it is characterized by X-ray diffraction(XRD) and UV-Vis. The effect of calcination temperature, calcination time and Fe^3+-doped amount on the photocatalytic activity of TiO2 are investigated by photocatalytic degradation of methyl orange irradiated by sunlight. The optimal calcination time for pure TiO2 and Fe^3+ -doped TiO2 is 4h and 3h, respectively. The optimal calcination temperature is 773K for both pure TiO2 and Fe^3+-doped TiO2. The amount of Fe^3+-doped can remarkably increase the catalytic activity of TiO2 under nature light irradiation, the optimal amount of Fe^3+ in Fe^3+ -doped TiO2 is 10.00%, and the corresponding decolorization efficiency is 28. 37 %.
出处 《材料导报》 EI CAS CSCD 北大核心 2010年第10期83-86,共4页 Materials Reports
基金 国家自然科学基金(30672103) 江西省教育厅重点科技项目(DB200802094)
关键词 溶胶-凝胶法 Fe3+掺杂 纳米TIO2 自然光 光催化降解 sol-gel method, Fe^3+-doped, nanometer TiO2, nature light, photocatalytic degradation
  • 相关文献

参考文献16

  • 1Fujishima A, Rao T N, Truk D A. Titanium dioxide photocatalysis[J]. Photochem Photobiol C: Photochem Rev,2000 (1):1.
  • 2Murphy A B, Barnes P R F, Randeniya L K, et al. Efficiency of solar water splitting using semiconductor electrodes [J]. Int J Hydrogen Energy,2006,31: 1999.
  • 3Xie Y B, Yuan C W. Characterization and photocatalysis of Eu^3+-TiO2 sol in the hydrosol reaction system[J]. Mater Res Bull,2004,39(4-5) :533.
  • 4Singh A P, Kumari S, Shrivastavb R, et al. Iron doped nanostruetured TiO2 for photoelectrochemical generation of hydrogen[J]. Int J Hydrogen Energy, 2008,33 : 5363.
  • 5Tang H, Prasad K, Sanjines R, et al. Electricaland optical properties of TiO2 anatase thin films[J]. J Appl Phys, 1994, 75(4):2042.
  • 6Lindgren T, Mwabora J M, Avendano E, et al. Photoelectrochemieal and optical properties of nitrogen doped titanium dioxide films prepared by reactive de magnetron sputtering [J]. J Phys Chem B,2003,107:5709.
  • 7Tong T, Zhang J, Tian B, et al. Preparation of Fe^3+ doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation[J]. J Hazard Mater,2008,155 : 572.
  • 8Wang X H, Li J G, Kamiyama H, et al. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspensionover iron (Ⅲ)-doped TiO2 nanopowders under UV and visible light irradiation[J]. J Phys Chem B, 2006, 110:6804.
  • 9Wang C Y, Bottcher C, Bahnemann DW, et al. A comparative study of nanometer sized Fe(Ⅲ)-doped TiO2 photocatalysts: Synthesis, characterization and activity[J]. J Mater Chem, 2003,13 : 2322.
  • 10Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2 : Correlation between photoreactivity and charge carrier recombination dynamics[J]. J Phys Chem, 1994,98 : 13669.

同被引文献205

引证文献15

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部