期刊文献+

基于SVR算法的预测研究

Predict for hotel residing rate based on LSSVM
下载PDF
导出
摘要 首次成功的将最小二乘支持向量机应用于宾馆入住率预测中。首先建立了该预测模型的最小二乘支持向量机模型,其次通过实验验证了该模型的正确性与可用性。 The paper firstly successfully uses the mothed of Lssvm to predict the hotel residing rote. Firstly, the model of the Lssvm for Predicting is builded, Sencondly, the model is accuracy and availability followed by experimental verification.
作者 杜丽霞
出处 《自动化与仪器仪表》 2010年第3期8-9,共2页 Automation & Instrumentation
关键词 支持向量机 酒店入住率 预测 LSSVM Hotel residing rate Predict
  • 相关文献

参考文献8

  • 1Vapnik, V. The Nature of Statistical Leaming Theory N.Y. Springer, 1995.
  • 2VapNik V.N. The nature of statistical learning theory. New York:Spriager-Verlag, 1995.
  • 3Vapnik V 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4李国正译.支持向量机导论[M].北京:电子工业出版社,2004,3.
  • 5V. Vapnik, A. Chervonenkis. On the uniform convergence of relative frenquencies of events to their probabilities [J].Theory of Probability and its Applications, 1971,16 (2):264-280.
  • 6V. Vapnik, A. Chervonenkis. The necessary and sufficient conditions for consistency in the empirical risk minimization metho[J]. Pattern Recongnition and Image Analysis, 1981,26(3):532-553.
  • 7Suykens J A K,J Vandewalle. Least squares support vector machines classfiers. Neural Processing Letters, 1999,10 (5):1032-I037.
  • 8Vapnik V.N.,Levin E.,Le Cun Y. Measuring the VC-dimension of a learning machine. Data mining computation, 1994(6): 851-876.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部