期刊文献+

求解P_0-NCP的一个光滑阻尼高斯牛顿法

A Smoothing Damped Gauss-Newton Method for P_0-NCP
下载PDF
导出
摘要 基于光滑对称扰动的min-函数(φ(a,b)=min{a,b}),提出了求解P0-函数非线性互补问题(简记为P0-NCP)的一个光滑阻尼高斯牛顿法.在较弱的条件下,证明了算法的全局收敛性. A new smoothing damped Gauss-Newton method is proposed for solving non- linear complementarity problem with P0 -function. The presented algorithm is based on the smoothing symmetrically perturbed min-function (Ф(a ,b) = min{a,b} ) . Show that the iteration sequence generated by the proposed algorithm converges globally under suitable conditions.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期14-19,25,共7页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(2009J01002) 福建省科技厅资助省属高校项目(2008F5019)
关键词 非线性互补问题 光滑阻尼高斯牛顿法 全局收敛性 nonlinear complementarity problem smoothing damped Gauss-Newton method global convergence
  • 相关文献

参考文献2

二级参考文献16

  • 1黄正海,韩继业,徐大川,张立平.The non-interior continuation methods for solving the function nonlinear complementarity problem[J].Science China Mathematics,2001,44(9):1107-1114. 被引量:17
  • 2Powell, M.J.D, Yuarl, Y. A recursive quadratic programming algorithm that use differentiable exact penalty function. Mathematical Programming, 35:265-278 (1986).
  • 3Vardi, A. A trust region algorithm for equality constrained minimization: convergence and implementation.SIAM Journal on Numerical Analysis, 22(3): 575-591 (1985).
  • 4Yuan, Y. An only 2-step Q-superlinear convergence example for some algorithms that use reduced Hessian approximation, Mathematical Programming, 32:224-231 (1985).
  • 5Yuan, Y. A null space algorithm for constrained optimization. In: Z.C,Shi et. al. eds. Advances in Scientific Computing, Science Press, Beijing, 210-218 (2001).
  • 6Cottle, R.W. Pang, J.S., Stone, E.R. The linear complementarity problems. Academic Press, New York:1992.
  • 7Dennis .Jr,J.E., Schnable, R.B. Numerical methods for unconstrained optimization and nonlinear equations.Prentice-Hall, Englewood Cliffs, N J, 1983.
  • 8Fischer, R. Solution of monotone complementarity problems with locally Lipschitzian functions. Mathematical Programming, 76:513-532 (1997).
  • 9Fletcher, R,.U Practical Methods of Optimization, Vol. 2, Constrained Optimization. John Wiley and Sons,New York and Toronto, 1981.
  • 10Geiger, C., Kanzow, C. On the solution of monotone complementarity problems. Computational Optimization and Application, 5:155-173 (1996).

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部