期刊文献+

一种新的基于随机神经网络的多用户检测方法

A New Multi-user Detection Based on Random Neural Network
下载PDF
导出
摘要 多址干扰是影响码分多址(CDMA)系统的主要因素,相对于传统检测技术而言,多用户检测技术可有效消除多址干扰的影响,提高系统容量。本文分析并提出了一种基于平均场退火方法的随机神经网络多用户检测器,并通过仿真研究了该算法的一些特点。 Multi-Address Interference (MAI) is the main factor that disturbs the CDMA system. Compared with the traditional detecting technology, the multi-user detection can eliminate the impact of MAI and increase the system capacity. The paper proposes a random neural network multi-user detector based on the mean field annealing algorithm and studies the features of the algorithm through simulation.
作者 韩静
出处 《山西煤炭》 2010年第4期60-62,共3页 Shanxi Coal
关键词 多址干扰 多用户检测 平均场退火算法 随机神经网络 MAI multi-user detection mean field annealing algorithm random neural networks
  • 相关文献

参考文献4

  • 1韩静,王华奎.DS-CDMA系统中的神经网络多用户检测技术.无线传感器网及网络信息处理技术:2006年通信理论与信号处理年会论文集[C].北京:电子工业出版社,2006,10.258-265.
  • 2丛爽,王怡雯.随机神经网络发展现状综述[J].控制理论与应用,2004,21(6):975-980. 被引量:8
  • 3Xiao Wang,Wu-Sheng Lu,Antomiou,A.Constrained minimum-BER multiuser detection[J].IEEE Transactions on Signal Processing,Oct.2000,48(10):2903-2909.
  • 4A.Yeller,R.D.Yates,S.Ulukus.CDMA multiuser detection:a nonlinear programming approach[J].IEEE Transactions on Communications,Jun.2002.50(6):1016-1024.

二级参考文献21

  • 1GELENBE E.Random neural networks with negative and positive signals and product form solution [J]. Neural Computation, 1989,1(14):502-511.
  • 2HODGKIN A L,HUXLEY A F.A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes [J]. J of Physiology (London), 1952,(117):550-544.
  • 3GELENBE E,STAFYLOPATIS A,LIKAS A.Associative memory operation of the random neural network model [C]∥KOHONEN H,eds. Proc of Int Conf Artificial Neural Network. North-Holland:Amsterdam,1991:307-312.
  • 4GELENBE E,KOUBI V,PERKERGIN F.Dynamical random neural network approach to the traveling salesman problem [J]. ELEKTRIK, 1994,2(1):1-10.
  • 5GELENBE E,FOURNEAU J M.Random neural networks with multiple classes of signals [J]. Neual Computation, 1999,11(4):721-731.
  • 6GELENBE E.Learning in the recurrent random neural network [J]. Neural Computation, 1993,5(1):154-164.
  • 7HALICI U. Reward,punishment and expectation in reinforcement learning for the random neural networks [M]∥Workshop on Biologically Inspired Autonomous Systems: Computation,Cognition and Control.Durham,NC,USA:Duke University,1996.
  • 8HALICI U.Reinforcement learning in random neural networks for cascaded decisions [J]. J of Biosystems, 1997,40(1/2):83-91.
  • 9HALICI U.Reinforcement learning with internal expectation for the random neural network [J]. European J of Operational Research, 2000,126(2):288-307.
  • 10GELENBE E,KHALED F.Hussain,Learning in the multiple class random neural network [J]. IEEE Trans on Neural Networks, 2002,13(6):1257-1267.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部