期刊文献+

基于概念格和条件信息熵的分类规则获取方法 被引量:1

Classification rule acquisition method based on concept lattice and conditional entropy
下载PDF
导出
摘要 分类规则挖掘是数据挖掘中的重要研究内容之一,概念格是提取分类规则的一种有效工具。首先,给出了一种面向分类的概念格批处理构造算法CLBCR,并从概念格内涵中提取分类规则;其次,采用条件信息熵作为分类规则的度量因子,对分类规则进行排序,从而进一步提高了分类规则的分类效率;最后,实验验证了该方法,在不影响分类正确率的同时,有效地提高了分类效率。 Classification rule mining is an important task in data mining,and concept lattice is an effective tool for mining classification rules.Firstly,a batch constructing algorithm of concept lattice oriented classification is presented and classification rule set is extracted from the intent of the concept lattice.Secondly,the rule order in the classification rule set is arranged by using conditional entropy as a measurement factor so that the classification efficiency is enhanced.In the end,the experimental results show the algorithm can effectively improve the classification efficiency under the classification accuracy unchanged.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第14期148-151,186,共5页 Computer Engineering and Applications
基金 山西省自然科学基金No.2006011041~~
关键词 数据挖掘 概念格 批处理 分类规则 条件熵 data mining concept lattice batch algorithm classification rule conditional entropy
  • 相关文献

参考文献16

  • 1Wille R.Reconstructing lattice theory:An approach based on hierarchies of concepts[M]//Rival I.Odered Sets.Reidel,Dordrecht-Boston:[s.n.],1982:445-470.
  • 2Quinlan J R.Induction of decision trees[J].Machine Learning,1986,1(1):81-106.
  • 3Quinlan J R.C4.5:Programs for machine learning[M].San Francisco,CA:Morgan Kaufmann Publishers Inc,1993.
  • 4Rumelhart D E,Hinton G E,Williams R J.Lesrning internal representations by error propagation[C]//Parallel Distributed Processing:Explorations in the Microstructure of Cognition.Cambridge,MA:MIT Press,1986(1):318-362.
  • 5Sahami M.Learning classification rules using lattices[C]//Proceedings of the Eighth European Conference on Machine Learning,ECML-95,1995,1 (1):343-346.
  • 6Njiwoua P,Nguifo.E M.Forwarding the choice of bias LEGAL-F:Using feature selection to reduce the complexity of LEGAL[C]//Proceedings BENELEARN-97,ILK and INFOLAB.Netherlands:Tilburg University,1997:89-98.
  • 7胡可云,陆玉昌,石纯一.基于概念格的分类和关联规则的集成挖掘方法[J].软件学报,2000,11(11):1478-1484. 被引量:64
  • 8王浩,胡学钢,赵文兵.基于量化相对约简格的分类规则发现[J].复旦学报(自然科学版),2004,43(5):761-764. 被引量:2
  • 9Lin Zhi-peng,Lin Zong-tian.Researeh on classifier based on lattice structure[C]//Proceedings of Conference on Intelligent Information Processing,2000:333-338.
  • 10Anamika G,Naveenk K,Vasudha B.Incremental classification rules based on association rules using formal concept analysis[C]//LNCS 3587:Machine Learning and Data Mining in Pattern Recognition.Bedin Heidelberg:Springer-Verlag,2005:11-20.

二级参考文献63

  • 1张凯,胡运发,王瑜.基于互关联后继树的概念格构造算法[J].计算机研究与发展,2004,41(9):1493-1499. 被引量:15
  • 2李云,刘宗田,陈崚,沈夏炯,徐晓华.基于属性的概念格渐进式生成算法[J].小型微型计算机系统,2004,25(10):1768-1771. 被引量:27
  • 3李云,刘宗田,陈崚,徐晓华,程伟.多概念格的横向合并算法[J].电子学报,2004,32(11):1849-1854. 被引量:50
  • 4宾宁,李宏,陈松乔.基于SPRINT分类算法的异构分布式数据挖掘研究[J].计算机测量与控制,2005,13(1):76-78. 被引量:6
  • 5[1]B Ganter,R Wille.Formal Concept Analysis:Mathematical Foundations.Berlin:Springer-Verlag,1999
  • 6[2]G Stumme,R Wille,U Wille.Conceptual knowledge discovery in databases using formal concept analysis methods.In:Proc of the 2nd European Symp on Principles of Data Mining and Knowledge Discovery.Berlin:Springer-Verlag,1998.450-458
  • 7[3]G Arevalo,T Mens.Analysing object-oriented application frameworks using concept analysis.In:Proc of the Workshops on Advances in Object-Oriented Information Systems.Berlin:Springer-Verlag,2002.53-63
  • 8[4]F Baader,B Sertkaya.Applying formal concept analysis to description logics.In:Proc of the 2nd Int'l Conf on Formal Concept Analysis.Berlin:Springer-Verlag,2004.261-286
  • 9[6]R Godin,R Missaoui,H Alaoui.Incremental concept formation algorithms based on Galois (concept) lattices.Computational Intelligence,1995,11(2):246-267
  • 10Liu B,Proceedings of the KDD-98,1998年,80页

共引文献80

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部