期刊文献+

高斯尺度参数自适应算法研究 被引量:2

Adaptive algorithm of Gaussian scale parameter
下载PDF
导出
摘要 为了避免计算过于复杂或因丢弃过多关键信息而造成失真过大的问题,在高斯尺度空间的构造中正确选用尺度参数,以使图像信息的变化呈现均匀的特点就显得尤其重要。目前许多高斯尺度空间应用中采用的层之间的尺度参数关系并不明确,有可能使得分层效果不理想。基于视觉特征模型提出一种自适应高斯尺度参数的算法,并通过实验验证了它的有效性,从而为图像的高层次处理如目标识别等提供信息量稳定变化的尺度空间。 For the purpose of avoiding the problem of complicated computation or over-distortion because of losing too much key information,it is crucial to choose appropriate scale parameter during constructing Gaussian scale-space in order to represent the image information in uniform distribution.At present,many applications in Gaussian scale-space about the scale parameter is not clear,which may lead to bad effect of layer.The paper proposes a kind of adaptive algorithm of scale parameter in terms of the module of visual characters.The method is evaluated by experiment in the last section.Experimental results present the uniformly distributed information in scale-space which will be useful for higher-level image processing technologies such as object recognition.
作者 李桂香 刘立
出处 《计算机工程与应用》 CSCD 北大核心 2010年第14期169-172,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60475024~~
关键词 高斯尺度空间 尺度参数 视觉特征 特征点 Gaussian scale-space scale parameter visual characters feature point
  • 相关文献

参考文献15

  • 1Kim J,Sikora T.Gaussian scale-space dense disparity estimation with anisotropic disparity-field diffusion[C]//Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling,2005.
  • 2Dork G,schmid C.Selection of scale-invariant parts for object class recognition[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision(ICCV '03),2003.
  • 3Mikolajezyk K,Schmid C.scale and afine invariant interest point detectors[J].international Journal of Computer Vision,2004,60(1):63-86.
  • 4Dnfournand Y,schmid C,Horand R.Matehing images with different resohitions[C]//CVPR ' 00,2000:612-618.
  • 5Lowe D.Object recognition from local scale-invariant features[C]//ICCV'99,1999:1150-1157.
  • 6Cunha A,Teixeira R,Velho L.Discrete scale spaces via heat equation[C]//Brazilian Symposium on Computer Graphics and Image Processing,2001,5:68-75.
  • 7Lindeberg T.Scale-space:A framework for handling image structures at multiple scales[C]//Processings of the Conference European ganization for Nuclear Research School of Computing,Egmond aan Zee,The Netherland,1996,9:8-21.
  • 8Lindeberg T.Scale-space for discrete signals[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12:234-254.
  • 9Lindeberg T.Scale-space theary:A basic tool for analyzing structures at different scales[J].Jouroal of Apphed Statistics,1994,21:224-270.
  • 10SNYDER W E,QI Hai-rong,林学訚,崔锦实,赵清杰,译..机器视觉教程[M]..北京:机械工业出版社,,2005..176-177,279-286..

二级参考文献13

  • 1Lindeberg Tony. Scale-space: A framework for handling image structures at multiple scales [ A ]. In: Proceedings of the Conference European Organization for Nuclear Research School of Computing [ C ]. Egmond aan Zee, The Netherlands, 1996,9:8 ~ 21.
  • 2Lindeberg Tony. Scale-space for discrete signals [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(3) :234 ~254.
  • 3Lindeberg Tony, Romeny Harr. Linear scale-space [ A ]. In:Geometry-Driven Diffusion in Computer Vision [ C ], Dordrecht,Netherlands, Kluwer Academic Publishers, 1994:1 ~ 77.
  • 4Sporring Jon. The entropy of scale-space[ A ]. In: Proceedings of the 13th International Conference on Pattern Recognition[ C ], Vieuna,Austria, 1996,1:900 ~904.
  • 5Sporring Jon, Weickert Joachim. Information measures in scalespaces[ J]. IEEE Transactions on Information Theory, 1999,45 (3):1051 ~ 1058.
  • 6Marr David. Vision [ M ]. San Francisco: CA, USA, Freeman Publishers, 1982.
  • 7Shi Yiyu, Tsui Hung Tat. Scale space filtering by Fejer kernel[ A ].In: 1994 International Symposium on speech, Image processing and Neural Networks [ C ], HongKong, 1994:13 ~ 16.
  • 8Witkin A P, Babaud J, Baudin M. Uniqueness of the Gaussian kernel for scale-space filtering [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8( 1 ) :26 ~ 33.
  • 9Henk J A M. Heijmans, Rein van den Boomgaard. Algebraic framework for linear and morphological scale-spaces [ J ]. Journal of Visual Communication and Image Representation, 2002,13 ( 1/2 ):269 ~ 301.
  • 10Jackway P T, Deriche M. Scale-space properties of the multiscale morphological dilation-erosion [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 ( 1 ) :38 ~ 51.

共引文献25

同被引文献30

  • 1王郑耀,程正兴,汤少杰.基于视觉特征的尺度空间信息量度量[J].中国图象图形学报,2005,10(7):922-928. 被引量:23
  • 2孙善超,王成国,李海涛,曾树谷.轮/轨接触几何参数对高速客车动力学性能的影响[J].中国铁道科学,2006,27(5):93-98. 被引量:47
  • 3葛书,尹涵春,夏军,刘璐,秦少玲.自然图像清晰度的恰可识别差异[J].现代显示,2007(8):38-41. 被引量:2
  • 4Lindeberg T. Scale-space for discrete signals[ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1990,12 (3) : 234-254.
  • 5Lindeberg T. Scale-space theory : A basic tool for analyzing struc- tures at different scales [ J ]. Journal of Applied Statistics, 1994, 21 (2) :224-270.
  • 6Lowe D. Distinctive image features from scate-invariant keypoints [J]. International Journal of Computer Vision,2004,60(2) :91-110.
  • 7Mikolajczyk K, Schmid C. A Performance Evaluation of Local De-scriptors[ J]. IEEE Transactions on PAMI,2005,27(10) :1615- 1630.
  • 8Re Y, Sukthankar R. PCA-SIFT: A more distinctive representa- tion for local image descriptors [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Wash- ington DC, USA: IEEE, 2004 : 506-513.
  • 9Bay H,Tuytelaars T,van Cool L. SURF:Speeded up robust fea- tures[ C ]//Proceedings of 2006 European Conference on Com- puter Vision. Graz,Austria:Springer,2006:404-417.
  • 10Morel J M,Yu G. ASIFY: a new framework for fully affine invari- ant image comparison [J]. SIAM Journal on Imaging Sciences, 2009,2(2) :1-31.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部