摘要
分水岭变换是图像分割的一种强有力的形态工具,能够自动生成一系列封闭分割区域。其不足之处是过分割、对噪声敏感。为克服分水岭变换固有的缺点,综合利用非线性滤波和改进的FCM算法优化分水岭变换得出的初始分割,提出了一种新的混合分割算法-HWIF(Hybrid Watershed and Improved FCM)分割法。与MeanShift算法及区域合并算法相比,该方法充分利用了区域的灰度和区域间的空间信息。实验结果表明该算法能有效克服分水岭算法的过分割问题,且分割效果优于以上两种方法。
Watershed transformation is a powerful morphological tool for image segmentation which can automatically generate a series of closed segmentation regions.However,the watershed transformation might give rise to over segmentation and it sensitive to noise.In order to overcome the inherent drawback of watershed algorithm-over-segmentation,a new method Hybrid Watershed and Improved FCM(HWIF) is proposed,which uses non-linear filter algorithm and a modified FCM algorithm to improve initial segmentation result obtained by the watershed transformation.This method uses information of regions gray and information between regions sufficiently compared with meanshift and region-merge method.Experiment result shows the proposed algorithm overcome the watershed algorithm-over-segmentation efficiently and obtain good segmentation.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第14期189-191,共3页
Computer Engineering and Applications
基金
重庆市自然科学基金No.2005BB2065~~
关键词
PGF滤波算法
分水岭
模糊C均值
特征散度
Peer Group Filtering(PGF)
watershed
Fuzzy C-Means(FCM)
feature divergence