期刊文献+

混合分水岭变换和改进FCM的图像分割方法 被引量:2

Hybrid method of image segmentation using watershed transform and improved FCM
下载PDF
导出
摘要 分水岭变换是图像分割的一种强有力的形态工具,能够自动生成一系列封闭分割区域。其不足之处是过分割、对噪声敏感。为克服分水岭变换固有的缺点,综合利用非线性滤波和改进的FCM算法优化分水岭变换得出的初始分割,提出了一种新的混合分割算法-HWIF(Hybrid Watershed and Improved FCM)分割法。与MeanShift算法及区域合并算法相比,该方法充分利用了区域的灰度和区域间的空间信息。实验结果表明该算法能有效克服分水岭算法的过分割问题,且分割效果优于以上两种方法。 Watershed transformation is a powerful morphological tool for image segmentation which can automatically generate a series of closed segmentation regions.However,the watershed transformation might give rise to over segmentation and it sensitive to noise.In order to overcome the inherent drawback of watershed algorithm-over-segmentation,a new method Hybrid Watershed and Improved FCM(HWIF) is proposed,which uses non-linear filter algorithm and a modified FCM algorithm to improve initial segmentation result obtained by the watershed transformation.This method uses information of regions gray and information between regions sufficiently compared with meanshift and region-merge method.Experiment result shows the proposed algorithm overcome the watershed algorithm-over-segmentation efficiently and obtain good segmentation.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第14期189-191,共3页 Computer Engineering and Applications
基金 重庆市自然科学基金No.2005BB2065~~
关键词 PGF滤波算法 分水岭 模糊C均值 特征散度 Peer Group Filtering(PGF) watershed Fuzzy C-Means(FCM) feature divergence
  • 相关文献

参考文献7

  • 1Vincent L,Soille P.Watersheds in digital space:An efficient algorithms based on immersion simulation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,3(6):583-598.
  • 2De Smet P,Piles R L.Implemantatian and analysis of an optimized rain failing watershed algorithm[C]//Proceeclings of SPIE,2000:759,766.
  • 3Hernandez S E,Barner K E,Yuan Y.Region merging using homogeneity and edge integrity for watershed-based image segmentation[J].Optical Engineering,2005,44(1):25-32.
  • 4章毓晋.图像分割[M].北京:科学出版社,2001..
  • 5Deng Y,Kenney C,Moore M S,et al.Peer group filtering and perceptual color image quantization[C]//Proe of IEEE International Symposium on Circuits and Systems,1999:21-24.
  • 6Gonzalez R C,Woods R E.Digital image processing[M].2nd ed.Editom:Prentice Hall,2002.
  • 7Bezdek J C.Cluster validity with fuzzy sets[J]Journal of Cyberbetics,1974,3(1):58-72.

共引文献576

同被引文献30

  • 1韦皆顶,费树岷,汪木兰,等.基于HSV颜色模型的自然场景下棉花图像分割策略研究[J].棉化学报,2008,20(1):34-38.
  • 2王勇,沈明霞,姬长英.采摘明成熟棉化不同部位颜色识别分析[J].农业学报.2007.23(4):183-185.
  • 3Canny J.A computational approach to edge detection[J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 1986,8 (6) : 679-698.
  • 4Zhang Xiaoyan, Shah Yong, Wei Wei, et aLAn image seg-mentation method based on improved watershed algo- rithm[C]//Proceedings of the 2010 International Confer- ence on Computational and Information Science, 2010-258-261.
  • 5Ning Jifeng,Zhang Lei,Zhang David,et al.Interactive image segmentation by maximal similarity based region merging[J].Pattern Recognition,2010,43(2) :445-456.
  • 6Meurie C, Cohen A, Ruichek Y.An efficient combination of texture and color information for watershed segmen- tation[C]//Proceedings of the 4th International Confer- ence,2010: 147-156.
  • 7姬宝金,吕建平,王祁远.一种改进的基于梯度重建的分水岭分割[EB/OL].(2010).http://www.paper.edu.cn.
  • 8郑金华.多目标进化算法及其应用[M].北京:科学出版社,2010.
  • 9Baradez M O, Mcguckin C P, Forraz N, et al.Robust and automated unimodal histogram thresholding and potential pplications[J].Pattem Recognition, 2004,37 (6) : 1131-1148.
  • 10Cinque L, Foresti G, Lombardi L.A clustering fuzzy approach for image segmentation[J].Pattern Recognition, 2004, 37 (9) : 1797-1807.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部