期刊文献+

保持拓扑性非负矩阵分解法在人脸识别的应用 被引量:4

Face recognition based on topology preserving nonnegative matrix factorization
下载PDF
导出
摘要 提出了一种用于人脸识别新的保持拓扑性非负矩阵分解方法。该方法通过将梯度距离最小化来发现人脸模式内在的流型结构。与PCA、LDA和最初的NMF方法相比较,保持拓扑性非负矩阵分解法发现一种嵌入来保留局部拓扑信息,比如边缘和质地。该文提出的保持拓扑性非负矩阵分解法对在有光照下的面部表情的变化有效。实验结果表明该方法提供了一种更好的脸部表示模式,同时也提高了人脸识别正确率。 A novel Topology Preserving Nonnegative Matrix Factorization(TPNMF) method is proposed for face recognition.The TPNMF is based on minimizing the constraint gradient distance,compared with L2 distance,the gradient distance is able to reveal latent manifold structure of face patterns.Compared with PCA,LDA and original NMF which search only the Euclidean structure of face space,TPNMF finds an embedding that preserves local topology information,such as edges and texture.In the way,the proposed TPNMF method is robust for variable in lighting and facial expression.Experimental results show that the proposed TPNMF approach provides a better representation of face patterns and achieves higher recognition rates in face recognition.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第14期202-204,230,共4页 Computer Engineering and Applications
关键词 人脸识别 非负矩阵分解 保持拓扑性 face recognition Nonnegative Matrix Factorization(NMF) topology preserving
  • 相关文献

参考文献13

  • 1Belhumeur P,Hespanha J,Kriegman D.Eigenfaces vs.fisheffaces:Recognition using class specific linear projection[J].IEEE Trans Pattem Analysis and Machine Intelligence,1997,19(7):711-720.
  • 2Li S Z,Hou X,Zhang H J,et al.Learning spatially localized,partsbased representation[J].IEEE Computer Vision and Pattern Recognition,2001.
  • 3Turk M,Pentland A.Eigenfaces for recognifion[J].Journal of Cognifive Neurascience,1991,3(1):71-86.
  • 4Zhao W Y,Chellappa R,Rasenfeld R,et al.Face recognition a literature survey[J].ACM Computing Survey,2003,35 (4):399-458.
  • 5Lee D D,Seung H S.Learning the parts of objects by non-negafive matrix factorization[J].Nature,1999,401:788-791.
  • 6Lee D D,Seung H S.Algofithms for non-negative matrix factorization[C]//Advances in Neural Information Processing,2000.
  • 7Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15 (6):1373-1396.
  • 8Henderson D W.Differential geometry:A geometric introduction[M].[S.I.]:Prentice Hall,1997.
  • 9Li S Z,Hou X W,Zhang H J,et al.Learning spatially localized,parts-baaed representation[C]//Proe IEEE Comput Via Pattern Recngnit,2001:207-212.
  • 10Cai D,He X,Han J,et al.Orthngonal laplacianfaces for face recognition[J].IEEE Trans Image Process,2006,15 (11):3608-3614.

同被引文献39

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部