期刊文献+

综合颜色和纹理特征的粒子滤波人脸跟踪算法 被引量:7

Face Tracking Algorithm Combing Color and Texture Features Based on Particle Filter
下载PDF
导出
摘要 提出了一种综合颜色和纹理特征的粒子滤波人脸跟踪算法.该方法利用粒子滤波能有效处理非线性非高斯过程和融合目标人脸多种测量信息的特性,针对人脸特征对环境变化的不同鲁棒性,综合加权颜色直方图和旋转复合小波进行人脸特征描述,将颜色和纹理特征融合到粒子滤波跟踪框架中.实验结果表明了该算法的鲁棒性、精确性和灵活性,与基于单一特征的粒子滤波跟踪方法相比,该算法稳健而有效,且对现实场景下人脸的跟踪效果准确. In this paper,a human face tracking algorithm combing color and texture features based on particle filter is proposed.The proposed approach makes use of the characteristics of particle filter which not only can effectively deal with nonlinear and non Gaussian process but also can combine multiple face features information.Different robustness to different environments of features is considered and the weighted color histogram and rotated complex wavelet filter(RCWF) are used to describe features.Thus the color and texture features can be fused under particle filter framework to develop the new face tracking algorithm.Experimental results demonstrate that,compared with the method based on single feature,the robustness,accuracy and flexibility of the algorithm have the better effectiveness of the performance,and the experiments also show the accuracy for face tracking in real scenes.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2010年第4期469-473,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(60772066)
关键词 人脸跟踪 粒子滤波 特征 纹理 加权颜色直方图 旋转复合小波 face tracking particle filter feature texture weighted color histogram rotated complex wavelet filter(RCWF)
  • 相关文献

参考文献10

  • 1Garcia C,Delakis M.Convolutional face finder:a neural architecture for fast and robust face detection[J].IEEE Transactions on Pattern Analysis and Machine,2004,26(11):1408-1423.
  • 2Conlaniciu D,Ralllesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 3刘明宝,姚鸿勋,高文.彩色图像的实时人脸跟踪方法[J].计算机学报,1998,21(6):527-532. 被引量:48
  • 4Isard M,Blake A.Condensation-conditional density propagation for visual tracking[J].International Journal of Computer Vision,1998,29(1):5-28.
  • 5Gustafsson F,Gunnarsson F,Niclas B,et al.Particle filters for position,navigation,and tracking[J].IEEE Transactions on Signal Processing,2002,50(2):425-437.
  • 6田卉,沈庭芝,李挺,郝兵.基于GA-MCMC的粒子滤波图像恢复算法[J].北京理工大学学报,2010,30(1):105-108. 被引量:4
  • 7Lee H S,Kim D.Robust face tracking by integration of two separate trackers skin color and facial shape[J].The Journal of Pattern Recognition Society,2007,40:3225-3235.
  • 8Feris R S,Cesar R M,Kruger V.Efficient real-time face tracking in wavelet subspace[C]∥IEEE ICCV Workshop on Recognition,Analysis and Tracking of Faces and Gestures in Real-Time Systems.Washington,D.C.,USA:IEEE,2001:113-118.
  • 9Manesh Kokare P K,Biswas B N,Chatterji.Texture image retrieval using new rotated complex wavelet filters[J].IEEE Transactions on Systems,Man and Cybernetics,2005,35(6):1168-1178.
  • 10Anon.Head tracking sequence[DB/OL].[1998-07-01].http:∥robotics.stanford.edu./-birch/headtracker/seq/.

二级参考文献9

  • 1Gonzalez R C, Woods R E. Digital image processing [M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2004.
  • 2沈庭芝,方子文.数字图像处理与模式识别[M].北京:北京理工大学出版社,1997.
  • 3Hoshiya M, Saito E. Structural identification by extended Kalman filter[J]. Journal of Engineering Mechanics, 1984,110(12) : 1757 - 1770.
  • 4Arulampalam M S, Maskell S, Gordon N. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50(2):174 - 188.
  • 5Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for position, navigation, and tracking [J]. IEEE Transactions on Signal Processing, 2002,50 (2) :425 - 437.
  • 6Liu Yuelu, Shen Tingzhi, Wang Xinyi. Image restoration using Gaussian particle filters[C] // Proceedings of the 2007 International Conference on Computational Intelligence and Security. Harbin, China: [s. n. ], 2007: 391 - 394.
  • 7Kwok N M, Gu Fang, Zhou W. Evolutionary particle filter: re-sampling from the genetic algorithm perspective Intelligent[C] // Proceedings of the 2005 IEEE/RST International Conference on Intelligent Robots and Systems. Sydney, Canada: Cadana University of Technology, 2005 : 2935 - 2940.
  • 8Spall J C. Estimation via Markov chain Monto Carlo[J]. IEEE Control Systems Magazine, 2003,23(2):34- 45.
  • 9Rao D, Swamy M, Plotkin E. Image restoration using an hybrid approach based on DWT and SMKF[C]//Proceedings of the 2001 IEEE International Conference on Image Processing. Thessaloniki, Greece:[s. n.], 2001 : 249 - 252.

共引文献50

同被引文献64

  • 1杜晓东,李岐强.支持向量机及其算法研究[J].信息技术与信息化,2005(3):37-40. 被引量:13
  • 2高建坡,杨浩,安国成,吴镇扬.Face tracking algorithm based on particle filter with mean shift importance sampling[J].Journal of Southeast University(English Edition),2007,23(2):196-201. 被引量:2
  • 3周芳芳,樊晓平,叶榛.均值漂移算法的研究与应用[J].控制与决策,2007,22(8):841-847. 被引量:59
  • 4ISARD M, BLAKE A. Condensationconditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
  • 5NUMMIARO K, KOLLERMEIER E, Van GOOL L. An adaptive colorbased particle filter[J]. Image and Vision Computing, 2003, 21(1): 99-110.
  • 6SCHONFELD H K. Fast object tracking using adaptive block matching[J]. IEEE Transactions on Multimedia, 2005, 7(5): 853-859.
  • 7QU W, SCHONFELD D. Realtime distributed multiobject tracking using multiple interactive trackers and a magneticinertia potential model[J]. IEEE Transactions on Multimedia, 2007, 9(3): 511-519.
  • 8ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/nonGaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 9LIU J S. Metropolized independent sampling with comparison to rejection sampling and importance sampling[J]. Statistics and Computing, 1996, 6(2): 113-119.
  • 10KONG A, LIU J S, WONG W H. Sequential imputations and Bayesian missing data problems[J]. Journal of the American Statistical Association, 1994, 89(425): 278-288.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部