摘要
在形式背景的对象集合幂集P(G)和属性集合幂集P(M)上定义了偏序关系。证明了偏序集(P(G),≤)或(P(M),≤)与概念格∪(K)之间存在序同构关系。给出了一种利用序同构关系构造∪(K)中所有概念的内涵和外延的方法。所得的若干定理拓展了文献中的研究结果。
Based on the formal context with object set G and attribute set M,we defined two partially ordered sets(poset in brief),namely,P(G) poset and P(M) poset.A new order isomorphic relation was found between poset(P(G),≤) and concept lattice ∪(K),or between(P(M),≤) and ∪(K).With the new order isomorphic relation,a method was given for constructing the intension and extension of the concepts in ∪(K).Theorems inferred from this paper have expanded the results in the bibliography.
出处
《苏州科技学院学报(自然科学版)》
CAS
2010年第2期9-12,共4页
Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金
安徽省高校自然科学基金资助项目(KJ2007B245)
关键词
概念格
序同构
概念
concept lattice
order isomorphism
concept