期刊文献+

预不变凸函数的一个等价条件 被引量:7

An Equivalent Condition of Preinvex Function
下载PDF
导出
摘要 广义凸性在数学规划与最优化理论中具有十分重要的作用。本文通过将对多元实值函数的研究转化为对单变量的实值函数的研究,首先证明了当X为关于η的不变凸集,η满足条件C,f满足条件D时,对任意给定的x,y∈X,λ∈[0,1],F(λ)=f(y+λη(x,y))是凸函数当且仅当f为关于η的预不变凸函数。在此基础上建立了二次连续可微的预不变凸函数的一个等价条件:设X为关于η的开不变凸集,η满足条件C,f二次连续可微且满足条件D,则f关于η为预不变凸函数等价于x,y∈X,η(x,y)T▽2f(x)η(x,y)≥0。本文的结果为判断函数的预不变凸性提供了新的思路。 Generalized convexity has been playing an important role in mathematical programming. In this paper, an equivalent condition of twice continuously differentiable preinvex function is established by transforming multivariate real-valued function into univariate real-valued function. Suppose that X be open invex set with respect to η, ηsatisfies condition C, f be twice continuously differentiable and satisfies condition D. Then f is preinvex function with respect to η if and only if arbitary x,y∈X, η(x,y) ^T ↓△^2f( x ) η ( x, y) ≥ 0. Our resuits provide new thoughts to verify the preinvexity of function and also generalize some known results.
作者 赵克全
出处 《重庆师范大学学报(自然科学版)》 CAS 2010年第3期6-8,共3页 Journal of Chongqing Normal University:Natural Science
基金 重庆师范大学青年基金(No.08XLQ01)
关键词 广义凸性 预不变凸函数 二次连续可微函数 等价条件 generalized convexity preinvex function twice continuously differentiable function equivalent condition
  • 相关文献

参考文献10

  • 1Avriel M,Diewert W E,Schaible S S,et al.Generalized concavity[M].New York:Penum Press,1988.
  • 2Bazaraa M S,Shetty C M.Nonlinesr programming theory and algorithms[M].New York:John whley & Sons,1979.
  • 3Hanson M A.On sufficiency of the Kuhn Tucker conditions[J].Journal of Mathematical Analysis and Applications,1981,80:544-550.
  • 4Weir T,Mond B.Preinvex functions in multiobjective optimization[J].Journal of Mathematical Analysis and Applications,1988,136:29-38.
  • 5Weir T,Jeyakumar V.A class of nonconvex functions and mathematical programming[J].Bulletin of Australian Mathematical Society,1988,38:177-189.
  • 6Pini R.Inexity and generalized convexity[J].Optimization,199l,22:5l3-525.
  • 7Mohan S R,Neogy S K.On invex sets and preinvex functions[J].Journal of Mathematical Analysis and Applications,1995,189:901-908.
  • 8Yang X M,Yang X Q,Teo K L.Generalizaed invexity and generalized invariant monotonicty[J].Journal of Optimization Theory and Applications,2003,117(3):607-625.
  • 9Yang X M,Li D.On properties of preinvex functions[J].Journal of Mathematical Analysis and Applications,2001,256:229-241.
  • 10赵克全.r-预不变凸函数的一个充分条件[J].重庆师范大学学报(自然科学版),2006,23(1):10-13. 被引量:12

二级参考文献12

  • 1黄应全,赵克全.r-预不变凸函数的两个充分条件[J].重庆师范大学学报(自然科学版),2004,21(4):17-18. 被引量:4
  • 2颜丽佳,刘芙萍.强预不变凸函数[J].重庆师范大学学报(自然科学版),2005,22(1):11-15. 被引量:37
  • 3杨晓琪.r凸函数的运算性质[J].重庆建筑工程学院学报,1989,11(2):93-101. 被引量:2
  • 4AVRIEL M.r-Convex Functions [ J ].Mathematical Programming,1972,2:309-323.
  • 5MOHAN S R,NEOGY S K.OnInvex Sets and Preinvex Functions[ J].JAMM,1995,189:901-908.
  • 6ANTCZAK T.(p,r)-Invex Sets and Functions[J].Uninversuty of Lodz,1999.
  • 7CRAVEN B D,GLOVER B M.Invex Functios and Duality[ J ].Journal of Australian Mathematical Society,1985,39 (A):1-20.
  • 8ANTCZAK T.On (p,r)-Invex-Type Functions Programming,problems [ J ].JMAA,2001,382-397.
  • 9ANTCZAK T.(p,r)-Invex Sets and Functions[J].JMAA,2001,263:355-379.
  • 10AVRIEL M,DIEWERT W E,SCHAIBLE S S,et al.Generalized Concavity[M].New York:Penum Press,1988.

共引文献11

同被引文献37

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部