期刊文献+

基于扩展式卡尔曼滤波的移动机器人未知环境下动态目标跟踪 被引量:9

Extended Kalman Filter Based Moving Object Tracking by Mobile Robot in Unknown Environment
下载PDF
导出
摘要 为了解决机器人在未知环境下的动态目标追踪问题,提出了一种基于扩展式卡尔曼滤波的估计算法.该算法将机器人、环境特征以及目标状态作为整体来构成系统状态,因此在迭代过程中系统各对象状态能够逐步建立起足够的关联性,从而提高了目标状态估计的准确性.进一步将该算法和基于占用栅格地图的动态物体检测方法相结合以获取目标和环境观测值,使算法最终能够应用于实际环境.另外,算法设计的数据关联环节能够有效处理目标伪观测值对系统状态估计的干扰.仿真实验和实体机器人实验结果验证了该算法的准确性和有效性. In order to solve the problem of moving object tracking by robot in unknown environment,an estimation algorithm based on extended Kalman filter(EKF) is proposed.The states of robot,environment feature and object are used to form system state as a whole in the algorithm,such that sufficient relation is established gradually among states of different objects in iteration process,which improves accuracy of object state estimation.Moreover,a method of moving object detection based on occupancy grid map is combined with our algorithm to obtain the measurements of moving object and environment landmarks,so that the final algorithm can be used in actual environment.Furthermore,the step of data association proposed in algorithm can deal with the system state estimation disturbance caused by false object observations.Simulation experiment and real robot experiment results prove the effectiveness and accuracy of the presented approach.
作者 伍明 孙继银
出处 《机器人》 EI CSCD 北大核心 2010年第3期334-343,共10页 Robot
基金 国家863计划资助项目(2006AA04Z258)
关键词 同时定位与地图构建 占用栅格地图 动态物体检测 目标跟踪 扩展式卡尔曼滤波 SLAM(simultaneous localization and mapping) occupy grid map moving object detection object tracking EKF(extended Kalman filter)
  • 相关文献

参考文献20

  • 1Smith R, Self M, Cheeseman E Estimating uncertain spatial relationships in robotics[M]//Autonomous robot vehicles. New York, USA: Springer-Verlag, 1990: 167-193.
  • 2Guivant J E, Nebot E M. Solving computational and memory requirements of feature-based simultaneous localization and mapping algorithms[J]. IEEE Transactions on Robotics and Automation, 2003, 19(4): 749-755.
  • 3Frese U, Hirzinger G. Simultaneous localization and mapping: A discussion[C]//Proceedings of the IJCAI Workshop on Reasoning with Uncertainty in Robotics. Seattle, USA: IJCAI, 2001: 17-26.
  • 4Thrun S, Koller D, Ghahramani Z, et al. Simultaneous mapping and localization with sparse extended information filters: Theory and initial results[C]//International Workshop on Algorithmic Foundations of Robotics. Berlin, Germany: Springer- Verlag, 2003: 363-380.
  • 5Newman P. On the structure and solution of the simultaneous localization and map building problem[D]. Australian: University of Sydney, 1999.
  • 6Montemerlo M, Thrun S, Koller D, et al. Fast-SLAM: A factored solution to the simultaneous localization and mapping problem[C]//AAAI National Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI, 2002: 593-598.
  • 7Besl P J, Mckay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 8Fu L, Milios E. Robot pose estimation in unknown environments by matching 2D range scans[J]. Journal of Intelligent and Robotic Systems, 1997, 18(3): 249-275.
  • 9Minguez J, Lamiraux F, Montesano L. Metric-based scan matching algorithms for mobile robot displacement estimation [C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2005: 3557-3563.
  • 10Wang C C, Thorpe C. Simultaneous localization and mapping with detection and tracking of moving objects[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 2918-2924.

同被引文献103

  • 1郝凯,孟正大.基于卡尔曼滤波的室内服务机器人定位[J].华中科技大学学报(自然科学版),2008,36(S1):193-195. 被引量:4
  • 2伍明,李琳琳,尹宗润.未知环境下机器人定位与运动目标侦测[J].山东科技大学学报(自然科学版),2012,31(3):66-73. 被引量:3
  • 3刘士荣,孙凯,张波涛,杨帆.基于改进Camshift算法的移动机器人运动目标跟踪[J].华中科技大学学报(自然科学版),2011,39(S2):223-226. 被引量:11
  • 4戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 5罗真,曹其新.基于视觉和里程计信息融合的移动机器人自定位[J].机器人,2006,28(3):344-349. 被引量:4
  • 6Vu T D, Aycard 0,Appenrodt N. Online localization and map-ping with moving object tracking in dynamic outdoor environ-ments [C]//IEEE Intelligent Vehicles Symposium. Piscataway,NJ, USA: IEEE, 2007: 190-195.
  • 7Vidal R, Rashid S,Sharp C,et al. Pursuit-evasion games withunmanned ground and aerial vehicles[C]//IEEE InternationalConference on Robotics and Automation. Piscataway, NJ, USA:IEEE, 2001: 2948-2955.
  • 8Huang F F, Wang L, Wang Q N, et al. Coordinated con-trol of multiple mobile robots in pursuit-evasion games[C]//Proceedings of the American Control Conference. Piscataway,NJ, USA: IEEE, 2008: 2861-2866.
  • 9Wang C C, Thorpe C, Thrun S, et al. Simultaneous localization,mapping and moving object tracking[J]. International Journal ofRobotics Research, 2007,26(9). : 889-916.
  • 10Wang C C, Thorpe C, Thrun S. Online simultaneous localiza-tion and mapping with detection and tracking of moving ob-jects: Theory and results from a ground vehicle in crowded ur-ban areas[C]//IEEE International Conference on Robotics andAutomation. Piscataway, NJ, USA: IEEE, 2003: 842-849.

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部