期刊文献+

基于决策树的交通拥挤状态预测 被引量:12

Prediction of Traffic Congestion Based on Decision Tree
下载PDF
导出
摘要 随着交通需求量的增加,城市道路拥挤现象越来越严重,所造成的直接或间接的经济损失是难以估量的.若能可靠地预测出即将形成的交通拥挤状态,并采取及时、有效的交通管理措施,可以避免交通拥堵的产生或减轻其严重程度.城市智能交通信息平台积累了大量的交通数据,各交通数据往往存在某些内在的联系.分析影响交通拥挤状态的环境因素,利用数据挖掘中的决策树方法对大量已有历史交通数据进行挖掘可以确立交通拥挤发生模式,从而利用发生模式与当前数据来预测交通流拥挤状态.决策树擅长处理非数值数据,而且计算速度快,对交通拥挤状态预测具有较强的适用性. With the increase of traffic demend,urban traffic congestion becomes more serious.The direct or indirect economic loss caused by traffic congestion is amazing.Managers can take measures timely if the forthcoming congestion can be reliably predicted.Urban traffic information platform has accumulated a large number of traffic data and the traffic data often intrinsically linked to each other.The data mining method of decision tree can be used to analysis the historical data and find the congestion patterns,then predict the current state of traffic congestion.Decision tree is good at dealing with non-numerical value and it can calculate rapidly,so it is applicable for the prediction of congestion state.
出处 《河北工业大学学报》 CAS 北大核心 2010年第2期105-110,共6页 Journal of Hebei University of Technology
关键词 交通拥挤 环境因素 决策树 拥挤状态 预测 traffic congestion environmental attributes decision tree congestion state prediction
  • 相关文献

参考文献3

二级参考文献17

  • 1史其信,郑为中.道路网短期交通流预测方法比较[J].交通运输工程学报,2004,4(4):68-71. 被引量:49
  • 2Chafield C 骆振华(译).时间序列分析引论[M].厦门:厦门大学出版社,1987..
  • 3Ben-Akiva M, Koutsopoulos H N, Mukundan A. A dynamic traffic model system for ATMS/ATIS operations [ J]. IVHS Journal, 1994,2 ( 1 ) : 1-19.
  • 4Vlahogianni Eleni I, Karlaftis Matthew G, Golias John C. Optimized and meta-optimized neural networks for shortterm traffic flow prediction: a genetic approach [ J ]. Transportation Research Part C ,2005 ( 13 ) :211-234.
  • 5Lin Wei-Hua, Lu Qing-ying, Dahlgren Joy. Dynamic procedure for short-term prediction of traffic conditions [ J]. Transportation Research Record,2002,1783 : 149-157.
  • 6Boyce D, Dowell P, Ligas J. The advance project : insights and achievements [ R ]. Center Court, Schaumberg: Advance Project Office, DoT, 120W, 1997.
  • 7Ellis S, Lansdown T, Richardson J. The road traffic advisor project [C]//Proc of the 10th Int Conf on Road Transport Information and Control, IEE. London: Conference Publication 472,2000:1-5.
  • 8Taylor M A P. Exploring the nature of urban traffic congestion: concepts, parameters, theories and models [ J ]. Proceedings of the Australian Road Research Board, 1992,16(5) :83-105.
  • 9Underwood R T. Speed, volume, and density relationships--quality and theory of trattic flow [ R ]. [ S.l. ] : Yale Bureau of Highway Traffic, 1961:141-188.
  • 10Greenberg H. An analysis of traffic flow operations research [ J ]. Transportation Research, 1959 (7) : 78- 85.

共引文献57

同被引文献97

引证文献12

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部