期刊文献+

Au点阵模板控制生长ZnO堆垒单晶棒 被引量:2

Growth of Stacked ZnO Single-Crystal Rods Controlled by Au-Dot Template
下载PDF
导出
摘要 采用磁控溅射技术在Si(111)衬底上溅射Au薄膜,900℃退火生成Au点阵模板,在Au点阵模板上溅射ZnO薄膜,O2气氛下1 000℃退火制备了ZnO堆垒单晶棒。研究了不同直径Au点阵模板对ZnO单晶棒结构性能的影响。采用扫描电镜(SEM)、高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)对样品结构形貌进行了分析。结果表明,生成有序排列的ZnO棒均由诸多六方纤锌矿单晶堆垒而成,较小Au点阵生成单晶棒的直径约为100nm。室温光致发光PL谱表明在376nm出现一个较强近紫外发射,在488nm附近出现一个较宽的深能级绿光发射,说明所制备样品具有良好的发光特性。 The Au-dot templates were synthesized by annealing Au films at 900 ℃ which were deposited on the Si(111)substrate with magnetron sputtering system.The ZnO films were deposited on the Au-dot templates with sputtering,then the samples were annealed at 1 000 ℃ in O2 to fabricate ZnO stacked single-crystal rods.The effects of Au-dot templates with different diameters on the structural performances of ZnO single-crystal rods were researched.The structures and morphologies of the samples were analyzed by scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results show that the aligned ZnO rods are composed of single crystal blocks in hexagonal wurtzite phase,and the diameters of ZnO rods with smaller Au dots are about 100 nm.Room temperature photoluminescence spectrum shows that a strong UV emission band and a broad green emission band appear at 376 nm and 488nm,respectively.It indicates that the synthesized ZnO rods have good luminescence properties.
出处 《微纳电子技术》 CAS 北大核心 2010年第5期277-281,共5页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(90301002 90201025)
关键词 氧化锌 Au点阵模板 磁控溅射 单晶堆垒 光学特性 ZnO Au-dot template magnetron sputtering single-crystal stacked optical property
  • 相关文献

参考文献18

  • 1PEARTON S J,NORTON D P,IP K,et al.Recent progress in processing and properties of ZnO[J].Superlattices and Microstructures,2003,34 (1/2):3-32.
  • 2PAN Z W,DAI Z R,WANG Z L.Nanobehs of semiconducting oxides[J].Science,2001,291 (5510):1947-1949.
  • 3LIU W C,CAI W.One-dimensional and quasi-one-dimensional ZnO nanostructures prepared by spray-pyrolysis-assisted thermal evaporation[J].Applied Surface Science,2008,254 (10):3162-3166.
  • 4WANG X D,SONG J H,WANG Z L Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices[J].J Mater Chem,2007,17 (8):711-720.
  • 5YE Z Z,HUANG J Y,XU W Z,et al.Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape[J].Solid State Communications,2007,141 (8):464-466.
  • 6CHANG S J,HSUEH T J,HSU C L,et al.A ZnO nanowire vacuum pressure sensor[J].Nanotechnology,2008,19 (9):095505-095508.
  • 7PARK WI,LEEC H,CHAEJ H,et al.Uhrafine ZnO nanowire electronic device arrays fabricated by selective metalorganic chemical vapor deposition[J].Small,2009,5 (2):181-184.
  • 8QIN Y,YANG R,WANG Z L.Growth of horizonatal ZnO nanowire arrays on any substrate[J].J Phys Chem:C,2008,112 (48):18734-18736.
  • 9GREYSON E C,BABAYAN Y,ODOM T W.Directed growth of ordered arrays of small-diameter ZnO nanowires[J].Advanced Materials,2004,16 (15):1348-1352.
  • 10XU S,WEI Y G,KIRKHAM M,et al.Patterned growth of vertically aligned ZnO nanowire arrays on inorganic sub-strates at low temperature without catalyst[J].J Am Chem Soc,2008,130 (45):14958-14959.

二级参考文献31

  • 1姚志刚,张希清,商红凯,滕小瑛,王永生,黄世华.Lasing action of high quality ZnO thin film deposited by radio-frequency magnetron sputtering[J].Chinese Physics B,2005,14(6):1205-1208. 被引量:1
  • 2Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P,Venkatesan CSRT 2003 Appl. Phys. Lett. 82 3424
  • 3Ohtomo A, Kawasaki M 1999 Appl. Phys. Lett. 75 980
  • 4Makino T, Chia C H, Tuan N T, Sun H D, Segawa Y 2000 Appl. Phys. Lett. 77 975
  • 5ZhaoD X, Liu Y C, Shen D Z, Lu Y M, Zhang J Y, Fan X W 2001 Journal of Applied Physics 90 5561
  • 6Shan F K, Kim B I, Liu G X, Liu Z F, Sohn J Y, Lee W J, Shin B C, Yu Y S 2004 Journal of Applied Physics 95 4772
  • 7Chang R C, Chu S Y, Yeh P W, Hong C S, Kao P C, Huang Y J 2008 Sensors and Actuators B 132 290
  • 8Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H 1998 Appl. Phys. Lett.72 2466
  • 9Li Z J, Shen W Z, Xue S W, Zu X T 2008 Colloids and Surfaces A: Physicochem. Eng. Aspects 320 156
  • 10Wang K, Ding Z B, Yao S D, Zhang H, Tan S L, Xiong F, Zhang P X 2008 Materials Research Bulletin

共引文献10

同被引文献23

  • 1程和,李燕,王锦春,邓宏.ZnO纳米线的合成与生长机理[J].发光学报,2006,27(6):991-994. 被引量:2
  • 2李必慧,唐一文,张新,姜云,罗利娟,贾志勇.水热法制备氧化锌阵列及其形貌控制[J].无机材料学报,2007,22(3):403-406. 被引量:16
  • 3Lue J T. A review of characterization and physical properties studies of metallic nanoparticles[J].{H}Journal of Physics and Chemistry of Solids,2001,(9-10):1599.
  • 4Kong X Y,Wang Z L. Spontaneous polarization-induced nanohelixes,nanosprings,and nanorings of piezoelectric nanobelts[J].{H}Nano Letters,2003,(12):1625.
  • 5Puntes V F,Krishnan K M,Alivisatos A P. Colloidal nanocrystal shape and size control:The case of cobalt[J].{H}SCIENCE,2001,(5511):2115.
  • 6Yin Z L,Sakamoto Y,Yu J H. Microemulsion-based synthesis of titanium phosphate nanotubes via amine extraction system[J].{H}Journal of the American Chemical Society,2004,(29):8882.
  • 7Duan X,Huang Y,Cui Y. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J].{H}NATURE,2001,(6816):66.
  • 8Huang M H. Room-temperature ultraviolet nanowire nanolasers[J].{H}SCIENCE,2001,(5523):1897.
  • 9Tsukazaki A,Ohtomo A,Onuma T. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J].{H}NATURE MATERIALS,2004,(1):42.
  • 10Li Z Q,Ding Y,Xiong Y J. Room-temperature surfaceerosion route to ZnO nanorod arrays and urchin-like assemblies[J].{H}Chemistry-A European Journal,2004,(22):5823.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部