摘要
Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, are considered. For anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the angle between the symmetry axis of orthotropic material and that of the periodic structure. Rotating these cylindrical fillers makes the angle changing continuously; as a result, pass bands and forbidden bands of the phononic crystal are changed. The plane wave expansion method is used to reduce the band gap problem to an eigenvalue problem. The numerical example is given for YBCO/Epoxy composites. The location and the width of band gaps are estimated for different rotating angles. The influence of anisotropy on band gaps is discussed based on numerical results.
Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, are considered. For anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the angle between the symmetry axis of orthotropic material and that of the periodic structure. Rotating these cylindrical fillers makes the angle changing continuously; as a result, pass bands and forbidden bands of the phononic crystal are changed. The plane wave expansion method is used to reduce the band gap problem to an eigenvalue problem. The numerical example is given for YBCO/Epoxy composites. The location and the width of band gaps are estimated for different rotating angles. The influence of anisotropy on band gaps is discussed based on numerical results.
基金
supported by the National Natural Science Foundation of China (No.10672019)