期刊文献+

基于计数布鲁姆过滤器的快速多维包分类算法 被引量:8

A Fast Multi-Dimensional Packet Classification Algorithm Using Counting Bloom Filter
下载PDF
导出
摘要 本文从数据包匹配规则的聚集特性出发,将计数布鲁姆过滤器和哈希表相结合,设计并实现了一种高效的多维包分类算法CBHT(Counting Bloom filter and Hash Table).基于包匹配规则的聚集特性,对于五维包分类问题,CBHT算法首先利用计数布鲁姆过滤器的过滤功能结合单域匹配获得与前两维匹配的小规模规则集,而后在此有限规则集中对后三维进行匹配.利用计数布鲁姆过滤器提高了包匹配速度并有效支持规则库的动态更新.实验结果表明CBHT算法比现有的B2PC算法节省60%的硬件资源,包匹配访问内存次数平均低于B2PC算法22.8%. Considering the aggregation property of the rules which a packet matched, we combined counting bloom filter and hash table to design and implement an efficient multi-dimensional packet classification algorithm called CBHT(Counting Bloom filter and Hash Table). Based on the aggregation property, for five-dimensional packet classification, we first got the small-scale rule set which matching the IP address using counting bloom filter. In this limited rule set we processed search on the other three dimensions. CBHT improves the speed of packet matching effectively and supports rule set' s dynamic update. The experimental results show that CBHT algorithm saves 60% of the hardware resources than B2PC algorithm and the number of average memory accesses lower than B2PC 22.8 %.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第5期1046-1052,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60673155) 国家自然科学基金重大研究计划(No.90718008) 国家973重点基础研究发展计划(No.2007CB310702)
关键词 包分类 计数布鲁姆过滤器 哈希表 packet classification counting bloom filter hash table
  • 相关文献

参考文献12

  • 1杨建华,谢高岗,张广兴,李忠诚.一种高效的业务流分类算法[J].电子学报,2006,34(3):549-552. 被引量:2
  • 2Tumer, Jonathan S. Scalable packet classification using distributed crossproducting of field labels [ A ]. Proceedings of IEEE INFOCOM [ C]. Miami,FL,USA,2005.269 - 280.
  • 3Ioannis Papaefstathiou. Memory-efficient 5D packet classification[ A ]. Proceedings of INFOCOM 26th IEEE International Conference on Computer Communications [ C ]. Anchorage, AK,United States,2007.1370- 1378.
  • 4Baboescu F, Sumeet Singh. Packet classification for core routers:Is there an alternative to CAMs[ A ]. Proceedings of Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies[C]. Toronho, Ontarion. Canada, 2003.53 - 63.
  • 5David E Taylor,Jonathan S Turner. ClassBench:A packet classification benchmark[A] .Proceedings of IEEE/ACM Trans on Networking[C]. San Francisco, CA, USA, 2007.499 - 511.
  • 6FAN L, CAO P. Almeida J, et al. Summary cache:A scalable wide-area Web cache sharing protocol [ A ]. Proceedings of IEEE/ACM Trans on Networking[C]. Vancouver, Canada, 2000.281 - 293.
  • 7F Baboescu, G Varghese. Scalable packet classification [ J ]. IEEE/ACM Transactions on Networking, 2005, 13 ( 1 ):2 - 14.
  • 8Sumeetsing, Florin Baboescu. Packet classification using multidimensional cutting[ A]. Proceedings of SIGCOMM[ C ]. Karlsruhe, Germany,2003.213 - 224.
  • 9I Papaefstathiou, V Papaefstathiou. An innovative low-cost classification scheme for combined multi-Gigabit IP and ethemet network[ A]. Proceedings of IEEE International Conference on Communications[C]. Istanbul, Turkey, 2006.211 - 216.
  • 10Sarang Dharmapurikar, Praveen Krishnamurthy, David E Taylor. Longest prefix matching using bloom filters[ A]. Proceedings of IEEE/ACM Trans on Networking[ C ]. Karlsmhe, Germany, 2006. 397 - 409.

二级参考文献7

  • 1A Feldmann,A Greenberg,C Lund,N Reingold,J Rexford,F True.Deriving traffic demands for operational IP networks:Methodology and experience[J].IEEE/ACM Transactions on Networking,2001,9 (3):265-279.
  • 2CAIDA.http://www.caida.org[Z/OL].
  • 3P Gupta,N McKeown.Packet classification on multiple fields[A].Proceedings of ACM SIGCOMM[C].Massachusetts,USA,1999.146-160.
  • 4V Srinivasan.Fast and Efficient Internet Lookups[D].USA:Washington University,1999.
  • 5P Gupta,N McKeown.Packet classification using hierarchical intelligent cuttings[J].IEEE Micro,2000,20(1):34 -41.
  • 6F Baboescu,G Varghese.Scalable packet classification[J].IEEE/ACM Transactions on Networking,2005,13 (1):2 -14.
  • 7V Srinivasan,S Suri,G Varghese.Packet classification using tuple space search[A].Proceedings of ACM SIGCOMM[C].Massachusetts,USA,1999.135-146.

共引文献1

同被引文献70

  • 1周明中,龚俭,丁伟.网络流超时策略研究[J].通信学报,2005,26(4):88-93. 被引量:10
  • 2张峰,谭兴晔,雷振明.一种基于FCBF的流信息抽样测量框架及算法[J].计算机应用研究,2005,22(6):38-41. 被引量:2
  • 3叶明江,崔勇,徐恪,吴建平.基于有状态Bloom filter引擎的高速分组检测[J].软件学报,2007,18(1):117-126. 被引量:13
  • 4LAKSHMINARAYANANK,RANGARAJANA,VENKARA-CHARY S.Algorithms for advanced packet classification withternaryCAMs[A].SIGCOMM’05[C].Philadelphia,USA:ACM Press,2005.193-204.
  • 5GUPTA P,MCKEOWN N.Packet classification on multiplefields[A].ACM SIGCOMM’99[C].Canbridge:ACM Press,1998.147-160.
  • 6马亚鸣,龚俭,杨望.高速报文分类算法P-Hicuts的改进[A].第十届海峡两岸网络技术交流会[C].南京:东南大学出版社,2009.351-357.
  • 7SINHA S,JAHANIAN F,PATEL M J.WIND:Workload-aware intrusion detection[A].Recent Advances in IntrusionDetection 2006[C].Hamburg,Germany:Springer Press,2006.290-310.
  • 8BRAUCKHOFFD,TELLENBACH B,WAGNERA.Impactofpacket sampling on anomaly detection metrics[A].SIG-COMM’06[C].Brazil:ACM Press,2006.159-164.
  • 9ESTAN C,VARGHESE G.New directions in traffic measure-ment and accounting[A].SIGCOMM’2002[C].Karlsruhe,Germany:ACM Press,2003.270-313.
  • 10王洪波,裴育杰,林宇,程时端,金跃辉.基于LRU的大流检测算法[J].电子与信息学报,2007,29(10):2487-2492. 被引量:16

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部