期刊文献+

量子遗传算法在多输出Reed-Muller逻辑电路最佳极性搜索中的应用 被引量:16

Application of Quantum Genetic Algorithm in Searching for Best Polarity of Multi-Output Reed-Muller Logic Circuits
下载PDF
导出
摘要 量子遗传算法是一种融合量子计算和遗传算法优点的智能算法,常用于求解组合优化问题.本文给出多输出RM(Reed-Muller)逻辑电路最佳极性搜索方案,将量子遗传算法应用到多输出固定极性RM电路逻辑优化中.针对量子遗传算法易陷入局部极值的缺陷,结合群体灾变思想,提出一种基于量子遗传算法的多输出RM逻辑电路最佳极性搜索算法.最后对多个大规模PLA格式基准电路测试表明:该算法与基于遗传算法的最佳极性搜索相比,在优化能力、寻优性能和收敛速度等方面都有不同程度的提高. QGA(Quantum Genetic Algorithm) is an intelligent algorithm which colligates the advantages of quantum computation and GA( Genetic Algorithm), which is often used to solve combinatorial problems.In this paper,the method of best polarities of multi-output RM (Reed-Muller) logic circuits is given, and QGA is applied to the optimization of multi-output fixed-polarity RM logic, circuits. To deal with the defects of the easily immerging in partial minimum frequently, this paper proposes a QGA based multi-output RM best polarity search algorithm which combined with community disaster. Finally, through several large-scale PLA format benchmarks testing,results show that QGA based search algorithm has higher performance than GA based in optimization, search and convergence.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第5期1058-1063,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60676020 No.60776022) 中国博士后科学基金(No.20090461355) 浙江省博士后科研项目 宁波市自然科学基金(No.2008A610005) 浙江省教育厅科研项目(No.20070859)
关键词 量子遗传算法 极性搜索 多输出RM电路 逻辑优化 quantum genetic algorithm polarity search multi-output RM circuits logic optimize
  • 相关文献

参考文献12

  • 1R Drechsler, H Hengster, H Schafer, J.Hartmann, B. Becker. Testability of 2 - level AND/EXOR circuits [ J ]. Journal of Electronic Testing: Theory and Applications (JETrA), 1999, 14(3) :219 - 225.
  • 2Y Xia,B.Ali,A E A. Almaini. Area and power optimization of FPRM function based circuits [ A ]. Proceedings-IEEE International Symposium on Circuits and Systems[C]. Bangkok, Thailand, 2003.329 - 332.
  • 3H Yang, E C Tan. Optimization of multi-output fixed-polarity Reed-Muller circuits using the genetic algorithm [ J ]. International Journal of Electronics, 1999,86(6) :663 - 670.
  • 4K H Han, J H Kim. Genetic quantum algorithm and its application to combinatorial optimization problem[ A]. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC[ C]. California. CA, USA, 2000. 1354 - 1360.
  • 5K H Han, K H Park, C H Lee, J H Kim. Parallel quantum-inspired genetic algorithm for combinatorial optimization problem [ A ]. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC [ C ]. Seoul, Korea, 2001. 1422 - 1429.
  • 6张葛祥,李娜,金炜东,胡来招.一种新量子遗传算法及其应用[J].电子学报,2004,32(3):476-479. 被引量:122
  • 7熊焰,陈欢欢,苗付友,王行甫.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858. 被引量:50
  • 8L Wang,A E A.Almaini.Exact minimisation of large multiple output FPRM functions [ J ]. IEE Proceedings: Computers and Digital Techniques,2002, 149(5) :203 - 212.
  • 9X Y Zhang, L L Wang,X G Zhou. Efficient RM conversion algorithm for large multiple output functions[ A ]. 2008 9^th International Conference on Solid-State and Integrated Circuits Technology Proceedings, ICSICT 2008 [ C ]. Beijing, China, 2008.2300 - 2303.
  • 10B B Li,L Wang.A hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007,37(3) :576 - 591.

二级参考文献6

  • 1John Preskill.Lecture Notes for Physics 229:Quantum Information and Computation [C].USA:California Institute of Technology,1998.
  • 2DiVincenzo D P.Two-bit gates are universal for quantum computation[J].Phys,Rev.A,1995,51(2):1015-1022.
  • 3Narayanan A,Moore M.Quantum inspired genetic algorithms[A].Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96) [C].USA:IEEE Press,1996.61-66.
  • 4Kuk-Hyun Han,Jong-Hwan Kim.Genetic quantum algorithm and its application to combinatorial optimization problem[A].Proceedings of the 2000 IEEE Congress on Evolutionary Computation[C].USA:IEEE Press,2000.1354-1360.
  • 5Kuk-Hyun Han,Kui-Hong Park,Ci-Ho Lee,Jong-Hwan Kim.Parallel quantum-inspired genetic algorithm for combinatorial optimization problem[A].Proceedings of the 2001 Congress on Evolutionary Computation[C].USA:IEEE Press,2001.1422-1429.
  • 6于洋,查建中,唐晓君.基于学习的遗传算法及其在布局中的应用[J].计算机学报,2001,24(12):1242-1249. 被引量:42

共引文献163

同被引文献186

引证文献16

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部