期刊文献+

基于观测器的复杂网络辨识新方法研究 被引量:6

A New State-Observer-Based Approach to the Identification of Complex Dynamical Networks
下载PDF
导出
摘要 充分考虑复杂网络中只有部分状态变量可测量的特点,提出了辨识复杂网络拓扑结构的新方法.针对复杂网络中存在部分不可测状态变量的问题,在系统具有多输出的情况下,提出了一种利用降维观测器辨识网络拓扑的方法;进一步实现了仅利用输出变量就能辨识网络拓扑.根据Lyapunov稳定性理论,推导出了设计观测器的条件和拓扑辨识方法.与现有基于观测器的复杂网络辨识方法相比,该方法更加简单实用.最后利用该方法对复杂网络的拓扑结构进行辨识仿真,效果良好. A new method is proposed to identify complex dynamical networks, in which only some state viariables can be measured. For multioutput systems where not all state variables are measurable, a reduced-order observer is designed. The approach based solely on output variables to identify networks is further realized in this paper. A few conditions serving the observer are specified,derived from the Lyapunov Stability Theorem. The proposed method for designing observers is more convenient and practical than traditional ones. Its effectiveness is demonstrated by the simulation of a complex network given in the paper.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第5期1064-1068,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60874091) 国家教育部新世纪优秀人才支持计划(No.NCET-06-0510)
关键词 复杂网络 拓扑辨识 观测器 complex networks topology identification observer
  • 相关文献

参考文献17

  • 1S H Strogatz. Exploring complex networks [J]. Nature, 2001, 410: 268 - 276.
  • 2A L Barabasi, R Albert. Emergence of scaling inrandom nertworks[J]. Science, 1999,286 (5493) :509 - 512.
  • 3R Albert, A L Barabasi. Statistical mechanics of complex network[J].Reviews of Modem Physics, 2002,74(1) :47 - 97.
  • 4李兵,王浩,李增扬,何克清,余敦辉.基于复杂网络的软件复杂性度量研究[J].电子学报,2006,34(B12):2371-2375. 被引量:38
  • 5X Li, G R Chen. Synchronization and desynchronization of complex dynamical networks: An engineering viewpoint[J]. IEEE. Transactions on Circuits and Systems 1,2003,50( 11 ): 1381 - 1390.
  • 6X B Lu, X F Wang, X Li, et al. Synchronization in weighted complex networks: Hereogeneity and synchronizability[J].Physica A,2006,370(2):381- 389.
  • 7J Wu, L Jiao. Synchronization in dynamic networks with non-symmetrical time-delay coupling based on linear feedback controllers[J].Physica A, 2008,387 (8 - 9) : 2111 - 2119.
  • 8J Lu, G Chen. A time-varying complex dynamical network models and its controlled synchronization criteria [ J ]. IEEE Transactions on Automatic Control, 2005,50(6 ) : 841 - 846.
  • 9G PJang, W K S Tang, G R Chen. A state-observer-based approach for synchronization in complex dynamical networks[J].IEEE Transactions on Circuits and Systems I, 2006,53 (12) : 2739 - 2745.
  • 10J Zhou, J A Lu. Topology identification of weighted complex dynamical networks[J].Physica A, 2007,386( 1 ):481 -491.

二级参考文献13

  • 1Rubey R J, Hartwick R D. Quantitative measurement of program quality[A]. Proceedings of the 23rd ACM National Conference [ C]. NewYork: ACM Press, 1968.671 - 677.
  • 2Halstead M H. Elements of Software Science [ M ]. New York:Elsevier North-Holland, 1977.
  • 3McCabe T. A complexity measure [ J ]. IEEE Transactions on Software Engineering, 1976,2(4) :308 - 320.
  • 4Bdto F, Abreu E, MOOD-metrics for object-oriented design[ A]. OOPSLA'94 Workshop on Pragmatic and Theoretical Directions in Object-Oriented Software Metrics [ C ]. Portland:OR, 1994.
  • 5Weyuker E. Evaluating software complexity measures[ J ]. IEEE Transactions on Software Engineering, 1988,14 : 1357 - 1365.
  • 6Chidamber S R, Kemerer C F. A metrics suite for object oriented design [ J]. IEEE Transactions on Software Engineering,1994,20(6) :476 - 492.
  • 7Watts D J, Strogatz S H. Collective dynamics of small-world networks[ J ] . Nature, 1998,393:440 - 442.
  • 8Batabasi A L and Albert R. Emergence of scaling in random networks[ J] . Science, 1999,286 : 509 - 512.
  • 9Valverde S, Ferrer Cancho R, Sole'R V. Scale-free networks from optimal design[J] .Europhysics Letters,2002,60:512-517.
  • 10Sole' R V, Ferrer R, Montoya J M, Valverde S. Tinkering and emergence in complex networks [ J ]. Complexity, 2002,8 ( 1 ) :20 - 33.

共引文献37

同被引文献30

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部