期刊文献+

一种全新的基于胸片计算机辅助检测肺结节方案 被引量:5

A New Computer Aided Diagnostic Scheme for Lung Nodule Detection on Chest Radiographs
下载PDF
导出
摘要 针对目前基于胸片肺结节计算机辅助检测系统的检出率低,且检测结果有大量假阳性的问题,提出一种全新检测方案.该方案首先引入基于活动形状模型的算法分割肺区,在肺区中选取大量可疑结节,然后为每个可疑结节提取基于分割结果的27个特征,最后引入线性分类器对可疑结节进行分类,给出最终检测结果.方案中,由于两步结节增强技术的引入,使得只有少量真实结节在可疑结节选取过程中丢失.特征提取时,引入分水岭算法分割可疑结节,基于分割结果提取能够有效区分可疑结节中真实结节和假结节的形状特征、灰度统计特征、曲面特征和梯度特征等,并利用可疑结节分割结果与感兴趣区域中Canny算子边缘检测结果的相关性来降低假阳性.本文选择日本放射技术学会提供的公共数据库测试系统的肺结节检测性能,系统在平均每幅图4.5个假阳性水平下检测出72.2%的结节.对非常不明显和极其不明显结节,系统的检测性能在4.5个假阳性水平下达到了52.7%. Major challenges in current computer-aided diagnostic (CADe) schemes for nodule detection in chest radiographs (CXRs) are to improve the sensitivity and reduce the false positive rate. This paper proposed a new CADe scheme. First, an active shape model based algorithm was applied to segment the lung field. Then, seventy nodule candidates were selected and 27 features for each candidate were extracted. Linear classifier was employed for classification. Because of two-step nodule enhancement, only few nodules were missed at the candidate selection step. For feature extraction, watershed algorithm was applied to segment the nodule candidate. Based on the segmentation result, shape-based features, gray level statistics features, surface-based features and gradient features were extracted. Another feature based on Canny edge detector was designed to eliminate bone crossings as false positives.A publicly available database containing 126 nodules in 126 CXRs was used for testing our CADe scheme. A sensitivity of 72.2 % with 4.5 FPs per radiograph was achieved in a leave-one-out cross-validation test. For the very subtle and extremely subtle nodules, a sensitivity of 52.7 % was achieved at the same FPs.
作者 陈胜 李莉
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第5期1211-1216,共6页 Acta Electronica Sinica
基金 上海市教委科研创新基金(No.08YZ75) 上海师范大学实验室建设配套基金(No.DSL803)
关键词 X光胸片 肺结节 计算机辅助检测 chest radiograph (CXR) lung nodule computer-aided detection (CAD)
  • 相关文献

参考文献19

  • 1ACS. Cancer Facts and Figures[R]. American Cancer Society, 2009.
  • 2G P Murphy,W Lawrence Jr, R E Lenhard Jr. Clinical oncology[R]. Washington, DC: Amer, Cancer Soc., 1995.
  • 3Van Ginneken B, Ter Haar Romeny, B M, Viergever M A. Computer-aided diagnosis in chest radiography: a survey [ J ]. IEEE Transactions on Medical Imaging 2001,20:1228- 1241.
  • 4Giger M L,Doi K,MacMahon H,Metz C E. Computerized detection of pulmonary nodules in digital chest images: use of morphological filters in reducing false positives detections[J]. Medical Physics, 1990,17(5) :861 - 865.
  • 5Lo S,Lin J,Freedman M,Chien M,Mun S. Artificial convolution neural network techniques and application for lung nodule detection[J].IEEE trans Med Imag, 1995,14: 711 - 718.
  • 6Xu X W,Doi K, Kobayashi T, MacMahon H,Giger M L. Development of an improved cad scheme for automated detection of lung nodules in digital chest images[J]. Medical Physics, 1997,24:1395 - 1403.
  • 7Yoshida H, Xu X W, Kobayashi T, Giger M L, Doi K. Computer-aided diagnosis scheme for detecting pulmonary nodules using wavelet transform[A]. Proc. SPIE[C]. San Diego: SPIE, 1995.2434: 621 - 626.
  • 8Shiraishi J, Qiang Li, Kenji Suzuki, Roger Engelmann, Kunio Doi, Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: Localized search method based on anatomical classification[J].Med Phys, 2006,33(7) : 2642 - 2653.
  • 9Freedman M T, Lo S C B, Osicka T, Lure F, Xu X W, Lin J, Zhao H, Zhang R. Computer aided detection of lung cancer on chest radiographs: Effect of machine cad false positive locations on radiologists' behavior[A]. In: Proceedings of the SPIE[C ]. San Diego: SPIE,2002.4684:1311 - 1319.
  • 10Wei J, Hagihara Y, Shimizu A, Kobatake H. Optimal image feature set for detecting lung nodules on chest X-ray images [A]. In:Computer Assisted Radiology and Surgery (CARS 2002) [ C ]. Springer: Berlin, 2002.706 - 711.

二级参考文献15

  • 1李冯,姚莉秀,杨杰,戈新良.复杂背景下的彩色图像人脸检测[J].上海交通大学学报,2006,40(5):778-782. 被引量:7
  • 2P Salembier, M Pardas. Hierarchical morphological segmentation for image sequence coding[J]. IEEE Trans, Image Processing, 1994, 3(5) :639 - 651.
  • 3Coleman G, Andrews H C. Image Segmentation by clustering[J]. Proceedings of the IEEE, 1979,67(5) :773 - 785.
  • 4L Vincent, P Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations[J]. IEEE Trans, PAMI, 1991,13 (6) :583-598.
  • 5P D Smet. Perfomaance and scalability of high optimized rainfalling watersheds algorithm [ A ]. CISST' 98 [ C ]. Lasvegas, Novada, USA : CISST,1998. 266 - 273.
  • 6T F Cootes, C J Taylor,D H Cooper, J Graham. Active shape models-their training and application[ J]. Computer Vision and Image Understanding, 1995,61 (1) :38 - 59.
  • 7Laurenz Wiskott, Jean-Marc Fellous, Norbert Krouger, Christoph von der Malsburg. Face recognition by elastic bunch graph matching [ J ].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997.775 - 779.
  • 8Viola P, Jones M J. Robust real-time face detection[ J]. International Journal of Computer Visionm,2004,57(2) : 137 - 154.
  • 9REIN-LIEN HSU, ABDEL-MOTTALEB M, JAIN A K.Face detection in color images[ J]. IEEE Trans on Pattern Analysis and Mechine Intelligence,2002,24(5) :696- 706.
  • 10P N Belhumeur, J P Hespanha, D J Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :711 - 720.

共引文献14

同被引文献46

  • 1FARAG A A, GRAHAM J, ELSHAZLY S, et al. Data-driven lung nodule models for robust nodule detection in chest CT [C].Proceedings of International Conference on Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2010: 2588-2591.
  • 2CHEN N, LIU G, LIAO Y, et al. Research on computer-aided diagnosis of lung nodule[C].Electronics, Computer and Applications, 2014 IEEE Workshop on. IEEE, 2014: 1019-1022.
  • 3KOSTIS W J, REEVES A P, YANKELEWITZ D F, et al Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images [J]. IEEE Transactions on Medical Imaging, 2003 22(10): 1259-1274.
  • 4FARAG A A, GRAHAM J, ELSHAZLY S, et al. Data-driven lung nodule models for robust nodule detection in chest CT [C].Proceedings of International Conference on Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2010:2588-2591.
  • 5NIE SH, LI L, WANG Y, et al. A segmentation method for sub-solid pulmonary nodules based on fuzzy c-means clustering[C]. Biomedical Engineering and Informatics (BMEI), 2012 5th International Conference on. IEEE, 2012: 169-172.
  • 6CHEN B, KITASAKA T, HONMA H, et al. Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images[J]. International Journal of Computer Assisted Radiology and Surgery, 2012, 7(3): 465-482.
  • 7LEE K H, HONG H, HAHN S, et al. Summation or axial slab average intensity projection of abdominal thin-section CT datasets: Can they substitute for the primary reconstruction from raw projection data? [J]. Journal of Digital Imaging, 2008, 4(21): 422-432.
  • 8LI H, WANG Y, LIU K J, et al. Computerizedradiographic mass detection part I: Lesion site selection by morphological enhancement and contextual segmentation[J]. IEEE Transactions on Medical Imaging, 2001, 20(4): 289-301.
  • 9Tarver T. Cancer Facts & Figures 2012. American Cancer Society (ACS). J Consum Health Internet, 2012,16(3):366-367.
  • 10Austin JH, Romney BM, Goldsmith LS. Missed bronchogenic carcinoma: Radiographic finding in 27 patients with a potentially respectable lesion evident in etrospect. Radiology, 1992,182(1):115-122.

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部