摘要
结合积分形式移动平面法的思想,讨论Rn上积分方程组u(x)=∫Rn|x-y|α-na(y)v(y)qdy,v(x)=∫Rn|x-y|α-nb(y)u(y)pdy的正解关于某一点的对称性和单调性,其中0<α<n,p,q>1,p+11+q+11=n n-α,a(x)和b(x)满足一些对称性、单调性.
This paper is devoted to the study of the positive solutions of the following system of integral equations in Rn: u(x)=∫Rn|x-y|α-na(y)v(y)qdy,v(x)=∫Rn|x-y|α-nb(y)u(y)pdy,where 0αn,p,q1,1p+1+1q+1=n-αn,a(x) and b(x) satisfy some symmetric and integral conditions.Inspired by the idea of the method of moving planes in integral forms,it has been proved that all the solutions are symmetric and monotone decreasing about some point.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2010年第3期248-251,共4页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(10802061)
浙江省自然科学基金资助项目(Y606144)
关键词
积分形式的移动平面法
对称性
单调性
积分方程组
moving planes in integral forms
symmetry
monotonicity
system of integral equations