期刊文献+

一个带不确定权的积分方程组解的对称性

A symmetry of solutions for a system of integral equations with the indefinite weight functions
下载PDF
导出
摘要 结合积分形式移动平面法的思想,讨论Rn上积分方程组u(x)=∫Rn|x-y|α-na(y)v(y)qdy,v(x)=∫Rn|x-y|α-nb(y)u(y)pdy的正解关于某一点的对称性和单调性,其中0<α<n,p,q>1,p+11+q+11=n n-α,a(x)和b(x)满足一些对称性、单调性. This paper is devoted to the study of the positive solutions of the following system of integral equations in Rn: u(x)=∫Rn|x-y|α-na(y)v(y)qdy,v(x)=∫Rn|x-y|α-nb(y)u(y)pdy,where 0αn,p,q1,1p+1+1q+1=n-αn,a(x) and b(x) satisfy some symmetric and integral conditions.Inspired by the idea of the method of moving planes in integral forms,it has been proved that all the solutions are symmetric and monotone decreasing about some point.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2010年第3期248-251,共4页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(10802061) 浙江省自然科学基金资助项目(Y606144)
关键词 积分形式的移动平面法 对称性 单调性 积分方程组 moving planes in integral forms symmetry monotonicity system of integral equations
  • 相关文献

参考文献11

  • 1STEIN E M.Harmonic Aalysis:Real-variable Methods,Orthogonality and Oscllatory Integrals[M].Princeton:Princeton University Press,1993:354-354.
  • 2CHEN W,LI C,OU B.Classification of solutions for a system of integral equations[J].Comm P D E,2005,30:59-65.
  • 3GIDAS B,NI W M,NIRENBERG L.Symmetry of positive solutions of nonlinear elliptic equations in Rn[C]//Mathematical Analysis and Applications,New York:Academic Press,1981:369-402.
  • 4CAFFARELLI L,GIDAS B,SPRUCK J.Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[J].Comm Pure Appl Math,1989,42(3):271-297.
  • 5LI C.Local asymptotic symmetry of singular solutions to nonlinear elliptic equations[J].Invent Math,1996,123(2):221-231.
  • 6CHEN W,LI C.A priori estimates for prescribing scalar curvature equations[J].Ann of Math,1997,145(3):547-564.
  • 7CHEN W,LI C,OU B.Classification of solutions for an integral equation[J].Comm Pure Appl Math,2006,59:330-343.
  • 8CHEN W,LI C,OU B.Qualitative properties of solutions for an integral equation[J].Disc Cont Dyn Sys,2005,12:347-354.
  • 9SERRIN J.A symmetry problem in potential theory[J].Arch Rational Mech Anal,1971,43:304-318.
  • 10FRAENKEL L.An Introduction to Maximum Principles and Symmetry in Elliptic Problems[M].Cambridge:Cambridge Unversity Press,2000.

二级参考文献10

  • 1GARRO M J,SORIA J.Boundedness of some integral operators[J].Can J Math,1993,45(6):1155-1166.
  • 2CARRO M J,RAPOSO J A,SORIA J.Recent developements in the theory of Lorentz spaces and weighted inequalities[J/OL].http:www.mat.ub.es/~soria/publications.2000-10-02.
  • 3SORIA J.Lorentz spaces of weak-type[J].Quart J Math Oxford,1998,49(193):93-103.
  • 4SAWYER E.Boundedness of classical operators on classical Lorentz spaces[J].Studia Math,1990,96(2):145-158.
  • 5MUCKENHOUPT B.Weighted norm inequalities for the Hardy maximal function[J].Trans Amer Math Soc,1972,65(5):207-227.
  • 6CARRO M J,GAARLIA del Amo A,SORIA J.Weak-type weights and normable Lorentz spaces[J].Proc Amer Math Soc,1996,124(3):849-857.
  • 7CARRO M J,SORIA J.The Hardy-Littlewood maximal functon and weighted Lorentz spaces[J].J London Math Soc,1997,55(1):146-158.
  • 8LECKBAND M A,NEUGEBAUER C J.A general maximal operator and the Ap-condition[J].Trans Amcr Math Soc,1983,275:821-831.
  • 9CARRO M J,SORIA J.Weighted Lorentz spaces and the Hardy operator[J].J Funct Anal,1993,112(2):480-497.
  • 10陈庆仙.广义分数次积分算子交换子在Hardy空间上的有界性[J].浙江大学学报(理学版),2004,31(1):17-20. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部