期刊文献+

二维偏微分方程的小波配点法

A Wavelet Collocation Method for Solving the Two-Dimensional Heat Equation
下载PDF
导出
摘要 根据多分辨分析,使用任意连续的尺度函数,在边界处结合外尺度函数,构造了区间上的插值基函数,并结合二元张量积小波分析将此方法推广到了二维。同时,给出了边值条件的积分处理方法,形成了求解二维偏微分方程的小波配点法。以二维热传导方程定解问题为例,选择Shannon函数进行了数值计算。结果表明,数值解达到了较高的精度,表明该方法适用于高维情形。 Based on multi-resolution analysis,the interpolation base functions in interval is proposed,by using arbitrary continuous scaling function and external scaling function in the boundry.And then this method is extended to two-dimensional function in combination with two-tensor product wavelet analysis.At the same time,an integral approach of dealing with boundary condition is suggested,whereby forming a wavelet collocation method for solving the two-dimensional differential equation.At last,taking the two-dimensional heat equation for example,and using Shannon scaling function to carry out numerical calculation,the results indicate that when the numerical solution reaches higher accuracy,this method can be adaptable to high-dimensional case.
出处 《西安理工大学学报》 CAS 北大核心 2010年第1期121-125,共5页 Journal of Xi'an University of Technology
关键词 多分辨分析 插值基函数 二元张量积 二维热传导方程 multi-resolution analysis interpolation base function two-tensor product two-dimensional heat equation
  • 相关文献

参考文献8

  • 1Bertoluzza S,Naldi G.A wavelet collocation method for the numerical solution of partial differential equations[J].Applied and Computational Harmonic Analysis,1996,3:1-9.
  • 2Vasilyev Oleg V,Paolucci S.A multilevel wavelet collocation method for solving partial differential equations in a finite domain[J].Journal of Computational Physics,1995,120:33-47.
  • 3Cai Wei,Zhang Wu.An adaptive spline wavelet ADI (SW-ADI) method for two-dimensional reaction-diffusion equations[J].Journal of Computational Physics,1998,139:92-126.
  • 4Bertoluzza S.Adaptive Wavelet Collocation Method for the Solution of Burgers equations[J].Transport Theory and Statistical Physics,1996,25(3-5):339-352.
  • 5Daubechies I.Two Recent Results on Wavelets:Wavelet Bases for the Interval and Biorthogonal Wavelets Diagonalizing the Derivative Operator[C] //Recent Advances in Wavelets Analysis.Boston:Academic Press,1993:237-258.
  • 6Wang Jian-zhong.Cubic spline wavelet bases of sobolev spaces and multilevel interpolation[J].Applied and Computational Harmonic Analysis,1996,3(1):154-163.
  • 7董晓红(Dong Xiao-hong).Shannon小波配点法在偏微分方程中的应用(Shannon Wavelet Collocation Method Applied to Partial Differential Equation)[D].哈尔滨:哈尔滨理工大学(Harbin:Harbin University of Science and Technology),2006.
  • 8吕桂霞,马富明.二维热传导方程有限差分区域分解算法[J].数值计算与计算机应用,2006,27(2):96-105. 被引量:12

二级参考文献7

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部