摘要
压缩传感理论利用信号的稀疏性,对其非自适应线性投影进行压缩采样,通过最优化问题准确重构原始信号。传统重构算法仅利用了信号的稀疏性,而未对转换后的信号结构进行分析。提出了一种基于4状态的隐马尔科夫树模型的小波域压缩采样信号的重构方法,相对2状态的隐马尔科夫树模型,该模型能够获取相邻尺度小波系数的更多相关特性,通过仿真结果表明,该算法具有更高的重构精度。
Compressed sensing theory enables the reconstruction of sparse signal from a small number of non-adaptives linear projections.Conventional reconstruction algorithm involves linear programming or greedy algo-rithms,these reconstruction techniques are generic and assume no particular structure in the signal aside from sparsity.The compressive sampling signal reconstruction in wavelet domain is inspired based on tow-state wavelet hidden Markov tree model.In this paper,we propose a four-state wavelet Hidden Markov Tree model,it can capture more in-terscales dependencies of wavelet coefficients between two neighboring scales,the simulation shows that it reconstruc-tion precision is improved.
出处
《电子测量与仪器学报》
CSCD
2010年第4期314-318,共5页
Journal of Electronic Measurement and Instrumentation
基金
国家自然科学基金(编号:60827001)资助项目
关键词
压缩采样
非自适应线性投影
小波变换
隐马尔科夫树模型
compressive sampling
non-adaptives linear projection
wavelet transform
hidden markov tree model