期刊文献+

基于隐马尔科夫树模型的小波域压缩采样信号重构方法 被引量:13

Compressive sampling signal reconstruction in wavelet-domain based on hidden Markov tree model
下载PDF
导出
摘要 压缩传感理论利用信号的稀疏性,对其非自适应线性投影进行压缩采样,通过最优化问题准确重构原始信号。传统重构算法仅利用了信号的稀疏性,而未对转换后的信号结构进行分析。提出了一种基于4状态的隐马尔科夫树模型的小波域压缩采样信号的重构方法,相对2状态的隐马尔科夫树模型,该模型能够获取相邻尺度小波系数的更多相关特性,通过仿真结果表明,该算法具有更高的重构精度。 Compressed sensing theory enables the reconstruction of sparse signal from a small number of non-adaptives linear projections.Conventional reconstruction algorithm involves linear programming or greedy algo-rithms,these reconstruction techniques are generic and assume no particular structure in the signal aside from sparsity.The compressive sampling signal reconstruction in wavelet domain is inspired based on tow-state wavelet hidden Markov tree model.In this paper,we propose a four-state wavelet Hidden Markov Tree model,it can capture more in-terscales dependencies of wavelet coefficients between two neighboring scales,the simulation shows that it reconstruc-tion precision is improved.
出处 《电子测量与仪器学报》 CSCD 2010年第4期314-318,共5页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(编号:60827001)资助项目
关键词 压缩采样 非自适应线性投影 小波变换 隐马尔科夫树模型 compressive sampling non-adaptives linear projection wavelet transform hidden markov tree model
  • 相关文献

参考文献15

  • 1CANDES E,WAKIN M.An introduction to compressive sampling[J].IEEE Sig.Proc.Mag,Mar 2008,25(2):21-30.
  • 2CANDES E,ROMBERG J,TAO T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans.Inform.Theory,2006,52:489-509.
  • 3李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 4BLU T,DRAGOTTI P L,VETERLI M.Sparse sampling of signal innovations[J].IEEE Signal Processing Magazine,Mar 2008,25(2):31-40.
  • 5MALLAT S.A wavelet tour of signal processing[M].San Diego:Academic Press,1999:431-454.
  • 6CROUSE M S,NOWAK R D,BARANIUK R G.Wavelet-based statistical signal processing using Hidden Markov Models[J].IEEE Trans.Signal Processing,Apr.1998,46(4):886-902.
  • 7DUARTE M F,WAKIN M B,BARANIUK R G.Wavelet-domain compressive signal reconstruction using a hidden markov tree model[C].Las Vegas:Proceedings of Intl.Conf.Acoustics,Speech and Sig.Proc.(ICASSP'08),2008:5137-5140.
  • 8FAN G L,XIA X G.Improved hidden Markov models in the wavelet-domain[J].IEEE Trans.Signal proc essing,2001,49:115-120.
  • 9CANDES E,ROMBERG J.Sparsity and incoherence in compressive sampling[J].Inverse Problems,2007,23:969-986.
  • 10李如玮,鲍长春,窦慧晶.基于双正交小波包分解的自适应阈值语音增强[J].仪器仪表学报,2008,29(10):2135-2140. 被引量:14

二级参考文献82

共引文献224

同被引文献187

引证文献13

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部