期刊文献+

Houart-Dupont钙振荡模型的复杂动态 被引量:1

Complex dynamics in the Houart-Dupont model of calcium oscillations
下载PDF
导出
摘要 运用中心流形定理和分岔理论分析了Houart-Dupont钙振荡模型的非线性动态,包括随参数变化时平衡点的类型及其稳定性的变化,从理论上严格证明了系统振荡现象产生与消失是由于平衡点发生了2次supercritical Hopf分岔导致的。通过运用matlab软件进行数值模拟,验证了理论分析结果的正确性。 This paper characterizes the nonlinear dynamics of the Houart-Dupont calcium oscillation model by using the center manifold theorem and bifurcation theory,including the stability and classification of equilibrium points.The results for the model show that supercritical Hopf bifurcations play very important roles in calcium oscillation.Numerical simulations confirm the theoretical analysis results.By combining the existing numerical results with the theoretical analysis results in this paper,a complete description of the dynamics of the Houart-Dupont calcium oscillation model has now been obtained.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期134-139,共6页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 Ca2+振荡 SUPERCRITICAL HOPF分岔 中心流形 周期轨 Ca^2+ oscillations supercritical Hopf bifurcation center manifold periodic orbit
  • 相关文献

参考文献7

  • 1Goldbeter A,Dupont G,Berridge M J.Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation[J].Proceedings of the National Academy of Sciences,1990,87:1461-1465.
  • 2Houart G,Dupont G,Goldbeter A.Bursting,Chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-trisphosphate Signal in a model for intracellular Ca2+ oscillations[J].Bulletin of Mathematical Biology,1999,61:507-530.
  • 3高凤新,李亚平,李前树.细胞内钙离子体系中的双参数内信号随机共振[J].高等学校化学学报,2004,25(9):1727-1729. 被引量:4
  • 4Zhong S,Qi F,Xin H W.Internal stochastic resonance in a model system for intracellular calcium oscillations[J].Chemical Physics Letters,2001,342:583-586.
  • 5Jing Z J,Chang Y,Chen G R.Complex dynamics in a permanent-magnet synchronous motor model[J].Chaos,Solitons and Fractals,2004,22(4):831-848.
  • 6Jing Z J,Chang Y,Guo B L.Bifurcation and chaos in discrete FitzHugh:Nagumo system[J].Chaos,Solitons and Fractals,2004,21(3):701-720.
  • 7Wiggins S.Introduction to applied nonlinear dynamical systems and chaos[M].Berlink:Springer,1990:5-278.

二级参考文献15

  • 1Benzi R. , Sutera S. , Vulpiani A.. J. Phys. A[J], 1981, 14:L453-L456
  • 2Bezrukov S. M. , Vodyanoy I.. Nature[J], 1997, 385: 319-321
  • 3HanggiP.. Chem. Phys. Chem.[J], 2002, 3:285-290
  • 4Gammaitoni L. , Hanggi P. , Jung P. et al.. Rev. Mod. Phys. [J], 1998, 70:223-287
  • 5HuG. , Ditzinger T. , Ning C. Z. etal.. Phys. Rev. Lett. [J], 1993, 71:807-810
  • 6Hou Z. H., Yang L. F. , Xin H. W.. J. Chem. Phys. [J], 1999, 111: 1592-1594
  • 7Amemiya T. , Ohmori T. , Yamanoto T. et al.. J. Phys. Chem. A[J], 1999, 103: 3451-3454
  • 8Zhong S. , Jiang Y. J. , Xin H. W.. J. Chem. Phys. [J], 1999, 111:9720-9724
  • 9Li W. H., Llopis J., Whitney M. et al.. Nature[J], 1998, 392:936-941
  • 10Houart G., Dupont G., Goldbeter A.. Bull. Math. Biol. [J], 1999, 61:507-530

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部