期刊文献+

基于模式识别方法的肺癌分型比较

Comparision of Lung Cancer Grouping Based on Pattern Recognition
下载PDF
导出
摘要 根据不同特征对分型准确率的影响,使用Logistic回归分析进行特征选择及优选实验研究,并采用神经网络和支持向量机方法对常见的周围型肺癌进行分型比较。通过实验,说明了神经网络和支持向量机在肺癌分型的应用方法,比较了两种模式识别方法在肺癌分型中的运用情况,验证了支持向量机在小样本情况下比神经网络具有更强的泛化能力。 Taking account of the influence of different features on the grouping accuracy,the charactesistic selection and optimal experiment were performed by adopting the logistic regression analysis method,and the grouping comparison of the common peripheral lung cancer was carried out by methods of neural network and support vector machine.During the experiments,the application of both the neural network and the support vector Machine methods was adopted,and also the two methods in the application of lung cancer grouping were compared.The experimental results prove that under condition of small sample,the support vector machine method has a stronger generalizability than the neural network method.
出处 《现代电子技术》 2010年第10期83-85,共3页 Modern Electronics Technique
基金 国家自然科学基金项目(60777004) 黑龙江省教育厅科技计划项目(11531048) 哈尔滨市科技创新人才研究专项资金项目(2008RFQXS062)
关键词 肺癌分型 支持向量机 神经网络 LOGISTIC回归 lung cancer grouping support vector machine neural network Logistic regression
  • 相关文献

参考文献6

  • 1边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..
  • 2陈广,陈景武.Logistic回归分析的判别预测功能及其应用[J].数理医药学杂志,2007,20(3):280-281. 被引量:16
  • 3WANG L P.Support vector machine:theory and application[M].New York:Springer Verlag,2005:1-66.
  • 4刘露,刘宛予,楚春雨,吴军,周洋,张红霞,鲍劼.胸部CT图像中孤立性肺结节良恶性快速分类[J].光学精密工程,2009,17(8):2060-2068. 被引量:25
  • 5LIU Lu,LIU Wan-yu,SUN Xiao-ming.Automated detection of pulmonary nodules in CT images with support vector machines[C]//Proceedings of SPIE the International Society for Optical Engineering Fifth International Symposium on Instrumentation Science and Technology.Shenyang:ISIST,2008,7133:26-30.
  • 6CRISTlANINI Nello,SHAWE-TAYOR John.支持向量机导论[M].北京:电子工业出版社,2004.

二级参考文献12

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部