期刊文献+

粒子群优化算法在离散变量结构优化中的应用 被引量:2

Particle Swarm Optimizer Algorithm for Design Optimization of Structures with Discrete Variables
下载PDF
导出
摘要 介绍了用于离散变量的粒子群优化(PSO)算法以及加入了约束处理的启发式粒子群优化(HPSO)算法。将HPSO算法的约束处理策略与另一种适用于粒子群算法的约束处理方法结合,并将改进后的算法应用到3个离散变量桁架结构截面优化设计算例中,同时与HPSO算法进行了对比分析。对于每个算例,改进算法和HPSO算法都运行了多次,从多次运行的统计数据中可以看出,改进算法比HPSO算法更稳定、收敛速度更快、搜索精度更高,且其约束处理方法减少了结构分析的次数,从而提高了整个程序运行的速度。 Heuristic Particle Swarm Optimizer(HPSO) algorithm is an improved Particle Swarm Optimizer(PSO) algorithm for solving constrained optimization problems.This paper combined HPSO algorithm with another constraint handling method applied to PSO algorithm.This paper applied the improved algorithm to three truss structures optimal design examples with discrete-sized variables and compared the results with that gained by HPSO algorithm.Both the improved algorithm and HPSO algorithm ran many times for each example.As can be seen from the statistics of these optimal design examples,the improved algorithm outperformed competitively with HPSO algorithm in terms of accuracy,stability and convergence speed.The novel constraint handling method reduces the number of structural analysis.Therefore,the improved algorithm is faster than HPSO.
出处 《结构工程师》 2010年第2期76-82,共7页 Structural Engineers
关键词 杆件结构 结构优化 粒子群优化算法 离散变量 truss structure structural optimization PSO algorithm discrete variable
  • 相关文献

参考文献12

  • 1Li L J,Huang Z B,Liu F.A heuristic particle swanll optimization method for truss structures with discrete variables[J].Computers and Structures,2009,87(7-8):435-443.
  • 2Lamberti L.An efficient simulated annealing algorithm for design optimization of truss structures[J].Computers and Structures,2008,86:1936-1953.
  • 3Lee K S,Geem Z W.A new structural optimization method based on the harmony search algorithm[J].Computers and Structures,2004,82:781-798.
  • 4孟超,尹久仁,童宏贻.改进的精英保护策略遗传算法及其在十杆桁架优化设计中的应用[J].结构工程师,2008,24(1):30-34. 被引量:2
  • 5Tong W H,Liu G R.An optimization procedure for truss structures with discrete design variables and dynamic constraints[J].Computers and Structures.2001,79:155-162.
  • 6Lee K S,Geem Z W,Lee S H,et al.The harmony search heuristic algorithm for discrete structural optimization[J].Engineering Optimization,2005,37:663-684.
  • 7Hu X H,RUSSELL EBERHART.Solving constrained nonlinear optimization problems with particle swarm optimization[c]//6th world Multiconference on Systemics,Cybernetics and Informatics,Orlando,Florida,USA,2002:203-206.
  • 8Kenndy J,Eberhart R C.Particle Swarm Optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks,Piscataway,NJ,USA,1995:1942-1948.
  • 9Shi Y,EBERHART R C.A modified Particle Swarm Optimizer[C]//IEEE International Conference on Evolutionary Computation Proceedings,Anchorage,AK,USA,1998:69-73.
  • 10He S,Prempina E,Wu Q H.An improved particle swarm optimizer for mechanical design optimization problems[J].Engineering Optimization,2004,36 (5):585-605.

二级参考文献10

  • 1[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 2[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 3[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 4[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 5[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.
  • 6[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329.
  • 7[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331.
  • 8[8]Michalewicz, Z. Genetic Algorithms+Data Structures=Evolution Programs. 3rd ed., New York: Springer\|Verlag, 1996.
  • 9Schmit L A, Farshi B. Some approximation concepts for structural synthesis [ J ]. AIAA J, 1974,12 ( 2 ) : 194-202.
  • 10Dobbs M W, Nelson R B. Application of optimality criteria to automated structural design [ J ]. AIAAJ, 1976,14(10) :311-318.

共引文献72

同被引文献16

  • 1赵赤云.钢结构住宅的现状及其综合经济效益分析[J].北京建筑工程学院学报,2004,20(2):20-23. 被引量:18
  • 2宫海,李国强.多高层建筑钢结构实用优化方法研究[J].结构工程师,2006,22(1):1-5. 被引量:5
  • 3顾元宪,项宝卫,赵国忠.桁架结构截面优化设计的改进模拟退火算法[J].计算力学学报,2006,23(5):546-552. 被引量:11
  • 4中华人民共和国建设部.JGJ99-98高层民用建筑钢结构技术规程[S].北京:中国建筑工业出版社,1998.
  • 5中华人民共和国建设部,国家质量技术监督检验检疫总局.GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
  • 6中华人民共和国建设部.GB50017-2003钢结构设计规范[S].北京:中国计划出版社,2003.
  • 7杨海霞,谢轶鹏.一种改进的遗传算法及其在结构优化设计中的应用[J].河海大学学报(自然科学版),2007,35(6):659-663. 被引量:7
  • 8Stojan K, Goran T, Simon 5, et al. Optimal design of single-story steel building structures based on para-metric MINLP optimization [ J ]. Journal of Construc- tional Steel Research, 2013 (81) : 86-103.
  • 9Kaveh A, Farahmand Azar B, Hadidi A, et al. Per- forrnance-based seismic design of steel frames using ant colony optimization [J]. Journal of Construction- al Steel Research, 2010, 66(4) : 566-574.
  • 10Kaveh A, Talatahari S. An improved ant colony opti- mization for the design of planar steel frames [ J ]. Engineering Structures, 2010, 52 (3) : 864-873.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部