期刊文献+

宏观到微观模型范式及其应用

Macro-to-Micro Algorithm Model and its Application
下载PDF
导出
摘要 宏观到微观模型源于粒计算的思想。该模型的数据结构用O(n)时间建成,并具备高度的并行性,足够的处理器可使之在O(1)时间内建成(n为点集规模)。由于插入、删除、查询等操作都在常数时间内完成,且不会引起树结构不平衡,因此数据结构具有良好的动态性。此外,M2M模型的数据结构及其预处理过程,能够被所有基于M2M模型的算法所共享,从而大大地提高了需要多种算法共同处理的操作效率。实验结果表明,基于该模型的最近邻算法和凸包算法较之对应的传统算法有很大优势。 Macro-to-Micro Model is similar to the idea of Granular Computing. The Macro-to-Micro data structure can be built in O(n) time. It can also be built in 0(1) time by parallel technology. Moreover, dynamic insertion, deletion and query operation can be completed in constant time without breaking the balance of tree. This data structure and preproeessing operation can be shared with Macro-to-Micro algorithms, so that we can greatly improve the efficiency of the multi-operation problem. Experimental results show that the nearest neighbour searching and convex hull algorithm based on Macro-to-Micro model has great advantage than traditional algorithm.
出处 《电脑与电信》 2010年第5期26-28,34,共4页 Computer & Telecommunication
基金 华南理工大学国家大学生创新性实验计划资助项目 项目编号:081056128
关键词 宏观到微观 最近邻算法 凸包算法 寻径算法 层次分解 Maero-to-Micro nearest neighbour searching:convex hull algorithm: pathfinding algorithrn hierarchical decomposition
  • 相关文献

参考文献15

  • 1SHAMOS,M. I,AND HOEY,D. Closest-point problems Proc 16th IEEE Syrup. Foundatmns of Computer Scwnce,pp. 151-162,Oct 1975.
  • 2RABIN,M O. Probabilistic algorithms,in Algorithms and Complexity:New Dwectmns and Recent Results,J. F. Traub (Ed.), Academic Press, New York, pp. 21-39, 1976.
  • 3BENTLEY,J.L. ,WEIDE,B. W. ,AND YAO,A. C. Optimal expected-time algorithms for closest point problems. ACM Trans. Math. Softw, 6,4,563-580,1980.
  • 4BERN,M. 1993. Approximate closest-point queries in high dimensions. Inf. Proc. Lett. 45,95-99.
  • 5J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm ffor finding best matches in logarithmic expected time. ACMTransactions on Mathematical Soft'ware, 3(3): 209-226, September 1977.
  • 6T. Liu,A. W. Moore,and A. Gray. Efficient exact k-NN and nonparametric classification in high dimensions. In S. Thrun, L. Saul, and B. Sch olkopf, editors , Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
  • 7T. H. Cormen,C. E. Leiserson,R. L. Rivest, aad C. Stein, Introduction to Algorithms (2 nd E. ),MIT Press,McGraw-Hill,New York, USA, 2001.
  • 8Sebastian Nowozin. A vanilla k-d tree implementation 2004.
  • 9R. L. G-raham, An efficient algorithm for determining the convex hull of a finite planar set, Information Processing Letters 1 (1972) 132-133.
  • 10Clarkson,K. L. New applications of random sampling in computational geometry. Discrete Comput. Geom. 2(1987): 195-222.

二级参考文献7

  • 1Guttman A. R-trees: a dynamic index structure for spatial searching[A]. Prec. ACM SIGMOD Conf. on Management of Data[ C],1984.47 - 57.
  • 2Sellis TK, Roussopoulos N, Faloutsos C. The R + -trve: a dynamic index for multi-dimensional objects[A]. Prec. 13rd Intl. Conf. on Very Large Data Bases (VLDB) [ C], 1987. 507 -518.
  • 3Beckmann N, Kriegel HP, Schneider R, et al. The R * -tree: an efficient and robust access method for points and rectangles[ A]. Proc.ACM SIGMOD Conf. on Management of Data[ C], 1990. 322 -331.
  • 4Samet H. The design and analysis of spatial data structures[ M].Addison Wesley, 1990.
  • 5Berchtold S, Keim DA, Kriegel HP. The X-trve : an index structure for high-dimensional data[ A]. Proc. 22nd Intl. Conf. on Very Large Data Bases (VLDB)[ C], 1996.28 -39.
  • 6Katayama N, Shin'ichi Satoh. The SR-tree : an index struceture for high-dimensional nearest neighbor queries[ A]. Proc. ACM SIGMOD Conf. on Management of Data[ C], 1997. 369 -380.
  • 7Robinson JT. The K-D-B-tree : a search structure for large multidi-mensional dynamic indexes[ A]. Proc. ACM SIGMOD Conf. on Management of Data[ C], 1981.10 - 18.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部