摘要
利用若当同构的定义及其矩阵的性质,证明了如果R是含有恒等元1的2-非挠连通交换半环,Tn(R)是半环R上的三角矩阵代数,U是R上的任一代数,Φ:Tn(R)→U(n≥2)是若当同构,那么Φ或者是同构,或者是反同构.
Using the property of matrices and the definiens of Jordan isomorphism,we obtaint that every Jordan isomorphism of Tn(R) onto an arbitrary algebra,U over R is either an isomorphism or an anti-isomorphism,where R is a 2-torsionfree commutative semiring with identity 1,and Tn(R) is the algebra of all upper triangular n×n(n≥2) matrices over R,U is an arbitrary R-algebra.The result generalizes the previous results by Beidar K I.
出处
《甘肃联合大学学报(自然科学版)》
2010年第3期5-8,共4页
Journal of Gansu Lianhe University :Natural Sciences
基金
福建省自然科学基金资助项目(2008J0186)
关键词
连通半环
若当同构
矩阵代数
同构
connected semiring
Jordan isomorphism
matrix algebra
automorphism