摘要
研究了差分方程xn+1=α-(xn-k)/xn,n=0,1,…的有界性,周期性和全局吸引性,其中α为(α>1)的实数,初始条件x-k,…,x0为任意实数,得到方程的平衡点是一个全局吸引子,且其吸引域依赖参数的限制条件.
In this paper,the global attractivity of the nonlinear difference equation xn+1=α-(xn-k)/xn,n=0,1,… is investigated,where α∈(1,+∞),k is a positive integer,and the initial conditions x-k,…,x0 are arbitrary positive real numbers.We show that the unique positive equilibrium of the equation is a global attractor with a basin that depends on certain conditions of the coefficient.
出处
《甘肃联合大学学报(自然科学版)》
2010年第3期20-22,共3页
Journal of Gansu Lianhe University :Natural Sciences
关键词
差分方程
周期性
有界性
全局吸引性
difference equation
period two solutions
invariant interval
global attractivity