期刊文献+

一类高阶差分方程的全局吸引性(英文)

Global Attractivity of a Higher-Order Nonlinear Difference Equation
下载PDF
导出
摘要 研究了差分方程xn+1=α-(xn-k)/xn,n=0,1,…的有界性,周期性和全局吸引性,其中α为(α>1)的实数,初始条件x-k,…,x0为任意实数,得到方程的平衡点是一个全局吸引子,且其吸引域依赖参数的限制条件. In this paper,the global attractivity of the nonlinear difference equation xn+1=α-(xn-k)/xn,n=0,1,… is investigated,where α∈(1,+∞),k is a positive integer,and the initial conditions x-k,…,x0 are arbitrary positive real numbers.We show that the unique positive equilibrium of the equation is a global attractor with a basin that depends on certain conditions of the coefficient.
作者 魏平 贾秀梅
出处 《甘肃联合大学学报(自然科学版)》 2010年第3期20-22,共3页 Journal of Gansu Lianhe University :Natural Sciences
关键词 差分方程 周期性 有界性 全局吸引性 difference equation period two solutions invariant interval global attractivity
  • 相关文献

参考文献13

  • 1AMLEH A M,GROVE E A,GEORGIOU D A,et al.On the recursive sequence xn+1=α+xn-1/xn[J].J Math Anal Appl,1999(233):790-798.
  • 2El-OWAIDY H M,AHMED A M,MOUSA M S.On asymptotic behaviour of the difference equation xn+1=α+xn-1/xn[J].Appl Math Comput,2004(147):163-167.
  • 3HAMZA A E.On the recursive sequence xn+1=α+xn-1/xn[J].J Math Anal Appl,2006(322):668-674.
  • 4HE W S,LI W T,YAN X X.Global attractivity of the difference equation xn+1=α+xn-k/xn[J].Appl Math Comput,2004(151):879-885.
  • 5HU L X,LI W T,STEVIC′S.Global asymptotic stability of a second order rational difference equation[J].J Difference Equ Appl,2008(8):779-797.
  • 6HU L X,LI W T,STEVIC′S.Global asymptotic stability of a second order rational difference equation[J].Comput Math Appl,2007(54):1260-1266.
  • 7KOCIC′ V L,LADAS G.Global behavior of nonlinear difference equations of higher order with application[M].Dordrecht:Kluwer Academic Publishers:1993.
  • 8CUNNINGHAM K C,KULENOVIC M R S,LADAS G,etal.On the recursive sequence xn+1=(αxn+βxn-1)/(γxn+Cxn-1)[J].Nonlinear Anal TMA,2001(47):4603-4614.
  • 9LI W T,SUN H R.Global attractivity of a rational recursive sequence[J].Dynam Syst Applicat,2002(11):339-345.
  • 10STEVIC′ S.On the difference equation xn+1=α+ xn-1/xn[J].Comput Math Appl,2008(56):1159-1171.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部