摘要
我们构造一个m次多项式pm,n,它是一个在给定的几个不同的结点上对已给实函数f∈L^21,∞进行联合插值,满足Pm,n(xi)=f(xi),Pm,n’(Xi),i,…,n,在L2范数下,在f的所有同样性质的插值多项式中,它又是f的最佳逼近,并且得到当f∈C「a,b」,m→∞,‖Pm,n-f‖→0。
We construct the polynomial pm,n of degree m which simultanious interpolates a given real-valued function f∈L1,∞2[a,b] at pre-assigned n distinct nodes satisfies: p(x:) = f(xi). p1(xi) = f1(xi)i=1,…, and is the best approximant to fin the L2-sense over all polynomials of degree≤m with the same interpolatory character. It is shown that the L2- error ||pm,n -f||→ 0asm→ ∞if f∈C[a,b].
出处
《山西师大学报(自然科学版)》
1998年第1期16-19,共4页
Journal of Shanxi Teachers University(Natural Science Edition)
关键词
最小平方逼近
实值函数
L2逼近
联合插值
Interpolation Orthonormal basis Least squares approxmation Uni-formly dense