期刊文献+

双吸引子多群体粒子群算法解决动态优化问题(英文) 被引量:1

Bi-attractor Multi-population Particle Swarm Algorithm for Dynamic Optimization Problems
下载PDF
导出
摘要 提出了一种新的"双吸引子多群体粒子群优化算法"(BMPSO)。与传统的粒子群优化算法(PSO)相比,BMPSO的主要特点是它使用了两个"群体吸引子"和两种搜索粒子。两种搜索粒子具有不同范围的搜索特性,一种利于进行全局搜索而另一种利于进行局部搜索。并且通过引入一种新的"传递"机制,两部分粒子可以更有效地共享搜索信息。实验表明,BMPSO算法在Moving Peaks Benchmark(MPB)测试问题上具有很好的性能表现。 A new Bi-attractor Multi-population Particle Swarm algorithm (BMPSO) was proposed.Compared with traditional particle swarm algorithms (PSO),BMPSO uses two types of search particles and two swarm attractors.The two types of search particles focus on different search scopes:one focuses on local search and the other focuses on global search.Furthermore,by adopting a new transfer mechanism,the two types of particles can share their experienced search information more effectively.Experimental analysis shows that BMPSO performs pretty well on the Moving Peaks Benchmark problem (MPB).
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第5期1106-1110,共5页 Journal of System Simulation
基金 National Science Foundation (60401015) (60572012) Anhui Science Foundation (050420201)
关键词 粒子群优化 双群体吸引子 多群体策略 动态优化算法 particle swarm optimization bi-attractor multi-population dynamic optimization algorithm
  • 相关文献

参考文献9

  • 1Y Jin. Evolutionary optimization in uncertain environments-a survey [J]. Evolutionary Computation, IEEE Transactions (S1089-778X), 2005, 9(3): 303-317.
  • 2J Kennedy, R Eberhart. A new optimizer using particle swarm theory [C]// Proceedings of the Sixth International symposium on Micro Machine and Human Science, 1995. USA: IEEE, 1995: 39-43.
  • 3X.Hu, R C Eberhart. Adaptive particle swarm optimization: Detection and response to dynamic systems [C]// Proceedings of International Conference of Ganetie Algorithms, 2001. USA: IEEE, 2002: 1666-1667.
  • 4W Du, B Li. Multi-strategy ensemble particle swarm optimization for dynamic optimization [J]. Information Sciences (S0020-0255), 2008, 178(15): 3096-3109.
  • 5T M Blackwell, J Branke. Multiswarms, exclusion, and anti- convergence in dynamic environments, Evolutionary Computation [J]. Evolutionary Computation, IEEE Transactions (S1089-778X), 2006, 10(3): 459-472.
  • 6B Brandstatter, U Baumgarmer. Particle swarm optimization-Mass spring system analogon [J]. Magnetics, IEEE Transactions (S0018-9464), 2002, 38(2): 997-1000.
  • 7D Parrott, X Li. A particle swarm model for tracking multiple peaks in dynamic environment using speciation [C]// Proceedings of International Conference of Genetic Algorithms, 2004. USA: IEEE, 2004: 98-103.
  • 8J Branke. The moving peaks benchmark website [Z/OL]. (1999-vet 1.0) [2001 ]. http://www.aitb.uni-karlsruhe.de/jbr/MovPeaks.html.
  • 9J Branke, H Schmeek. Designing evolutionary algorithms for dynamic optimization problems [M]// Theory and Application of Evolutionary Computation: Recent Trends Eds. Berlin, Germany: Springer-Verlag, 2002, 239-262.

同被引文献15

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//IEEE International Conference on Neural Networks, Nov 27-Dec 01, 1995, Perth, WA, Australia. USA: IEEE, 1995: 1942-1948.
  • 4Selvan K V, Muhammamrnad M S, Masra S M W, et al. DNA words based on an enhanced algorithm of multi-objective particle swarm optimization in a continuous search space [C]//2011 International Conference on Electrical, Control and Computer Engineering (INECCE). June 21-22, 2011, Pahang, Malaysia. USA: IEEE, 2011: 154-159.
  • 5Zielinski K, Laur R. Adaptive parameter setting for a multi- objective particle swarm optimization algorithm [C]//IEEE Congress on Evolutionary Computation, Sept 25-28, 2007, Singapore. USA: IEEE. 2007: 3019-3026.
  • 6Daneshyari M, Yen G G. Cultural-Based Multiobjective Particle Swarm Optimization [J]. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics (S1083-4419), 2011, 41(2): 553-567.
  • 7Minh-Trien Pham, Diahai Zhang, Chang Seop Koh. Multi-Guider and Cross-Searching Approach in Multi-Objective Particle Swarm Optimization for Electromagnetic Problems [J]. IEEE Transactions on Magnetics (S0018-9464), 2012, 48(2): 539-542.
  • 8Ying Song, Chen Zeng-Qiang, Yuan Zhu-Zhi. New Chaotic PSO- Based Neural Network Predictive Control for Nonlinear Process [J]. IEEE Transactions on Neural Networks (S 1045-9227), 2007, 18(2): 595-601.
  • 9Zhou Ke-Liang, Qin Jie-Qiong. PID controller parameters tuning of main steam temperature based on chaotic particle swarm optimization [C]// IEEE International Conference on Computer Science and Automation Engineering (CSAE), June 10-12, 2011, Shanghai, China. USA: IEEE, 2011: 647-650.
  • 10Alizadeh G, Baradaraannia M, Yazdizadeh P, et al. Serial configuration of genetic algorithm and particle swarm optimization to increase the convergence speed and accuracy [C]// International Conference on intelligent Systems Design and Applications (ISDA), Nov 29-Dec 1, 2010, Cairo, Egypt. USA: IEEE, 2010: 272-277.

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部