期刊文献+

多变量动态模糊偏最小二乘建模方法及其应用 被引量:3

Multivariable Modeling Based on Dynamic Fuzzy PLS and Its Application
下载PDF
导出
摘要 针对复杂工业过程存在的多变量、非线性和时变不确定性问题,将动态PLS与模糊建模方法相结合,提出一种基于DFPLS(动态模糊偏最小二乘)的多变量非线性动态建模方法。该方法外部采用动态PLS方法解决多变量高维共线性问题,并描述系统的动态特性;内部采用FCM(模糊c均值聚类)与TSK模糊模型相结合,建立多个子模型的方法来拟合系统的非线性。将本方法应用于氧化铝生产过程中铝酸钠溶液组分浓度的软测量,仿真实验表明该方法预测精度高,泛化能力强,用于铝酸钠溶液组分浓度的在线检测是可行有效的。 A new modeling method of multivariable nonlinear dynamic system based on DFPLS was proposed according to the complex industry process with multivariable,nonlinear and time-varying uncertainties.Outer dynamic PLS algorithm was used to reduce the dimensionality of data and to remove collinearity,and it also described the dynamic character.The inner fuzzy model which was combined with FCM and several TSK fuzzy models was used to capture the nonlinearity.This method was implemented in the process of alumina production to measure the component concentrations of sodium aluminate solution and the simulation results show the modeling method has the merits such as accurate prediction and good generalization ability.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第5期1309-1312,1318,共5页 Journal of System Simulation
基金 国家863高技术发展计划(2006AA040307) 教育部"111计划"(B08015) 教育部科学技术研究重大项目(308007) 辽宁省教育厅资助项目(05L346) 国家自然科学基金(60904079)
关键词 偏最小二乘 FCM TSK模糊模型 软测量 Partial Least Squares (PLS) FCM TSK fuzzy model soft-sensor
  • 相关文献

参考文献10

  • 1卢荣德,陈宗海,王雷.复杂工业过程计算机建模、仿真与控制的综述[J].系统工程与电子技术,2002,24(1):52-57. 被引量:10
  • 2G Baffi, E B Martin, A J Morris. Non-linear Projection to Latent Structures Revisited: The Quadratic PLS Algorithm [J]. Computers and Chemical Engineering (S0098-1354), 1999, 23(3): 395-411.
  • 3Bart M Nicolai, Karen I Theron, Jeroen Lammertyn. Kernel PLS Regression on Wavelet Transformed NIR Spectra for Prediction of Sugar Content of Apple [l]. Chcmomctrics and Intelligent Laboratory Systems (S0169-7439), 2007, 85(2): 243-252.
  • 4Pekka Teppola, Pentti Minkkinen. Wavelet-PLS regression models for both exploratory analysis and process monitoring [J]. Journal of Chemometrics, 2000, 14(5-6): 383-399.
  • 5G Baffi, E B Martin, A J Morris. Non-linear projection to latent structures revisited (the neural network PLS algorithm) [J]. Computers and Chemical Engineering (S0098-1354), 1999, 23(9): 1293-1307.
  • 6Yoon Ho Bang, Chang Kyoo Yoo, In-Beum Lee. Nonlinear PLS modeling with fuzzy inference system [J]. Chemomelrics and Intelligent Laboratory Systems (SO 169-7439), 2003, 64(2): 137-155.
  • 7Olufemi A Adebiyi, Armando B Corripio. Dynamic Neural Networks Partial Least Squares (DNNPLS) Identification of Multivariable Processes [J].Computers and Chemical Engineering (S0098-1354), 2003, 27(2): 143-155.
  • 8Xiao-Jun Zeng, Madan G Singh. Approximation Theory of Fuzzy Systems-SISO Case [J]. IEEE Transactions on Fuzzy Systems, 1994, 2(2): 162-176.
  • 9Chiu S L. Fuzzy Model Identification Based on Cluster Estimation for Reservoir Inflow Forecasting [J]. Hydrol Process, 2008, 22(6): 827-841.
  • 10Chang Kyoo Yoo, Peter A. Vanrolleghem, In-Beum Lee. Nonlinear Modeling and Adaptive Monitoring with Fuzzy and Multivariate Statistical Methods in Biological Wastewater Treatment Plants [J]. Journal of Bioteehnology (S0168-1656), 2003, 105(1-2): 135- 163.

二级参考文献7

共引文献9

同被引文献33

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部