期刊文献+

基于分层粒子滤波的地标检测与跟踪 被引量:4

Landmark detection and tracking based on layered particle filter
下载PDF
导出
摘要 针对直升机运动平台获得的地标图像序列高噪声且帧间位移大等难点,提出一种改进的局部二值模式向量,利用集成学习算法训练分类器区分地标模式和背景模式.采用分层粒子滤波算法有效地结合纹理和颜色2种特征,将地标检测与跟踪有机地融为一体.该算法首先选择似然值均值作为观测值,并利用均值漂移算法将粒子移到高似然值区域,然后选择颜色直方图作为观测,逐步将粒子移向高权重区域,最后通过聚类算法估计地标数目与位置.实验验证了该算法的有效性和鲁棒性. To overcome high noise and large inter-frame displacement in landmark image sequences captured from a moving-helicopter platform,an improved local binary pattern descriptor was proposed to discriminate patterns of landmark and those of background using the classifier trained by the ensemble method.The layered particle filter is adopted to fuse the color-based and texture-based features,and the detection and tracking are combined in a principled way.Likelihood mean is chosen as observations first,and particles are moved towards their local modes by mean shift in likelihood image.Color histogram is then used to sample particles with high weight gradually.Finally clustering algorithm is applied to estimate the number and positions of landmarks.Experiment on real image sequences demonstrated that the proposed algorithm is effective and robust.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期687-691,共5页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2006AA10Z204)
关键词 微小型无人直升机 视觉导航 分层粒子滤波 局部描述符 集成学习 mini unmanned helicopter visual navigation layered particle filter local descriptor ensemble method
  • 相关文献

参考文献24

  • 1VALAVANIS K P. Advances in unmanned aerial vehicles: state of the art and the road to autonomy [M]. Dordrecht: Springer, 2007: 3-7.
  • 2AMIDI O. An autonomous vision-guided helicopter [D]. Pittsburgh: Carnegie Mellon University, 1996.
  • 3AMIDI O, KANADE T, FUJITA K. A visual odometer for autonomous helicopter flight [J]. Robotics and Autonomous Systems, 1999, 28(2/3) : 185 - 193.
  • 4SHAKERNIA O, MA Y, KOO T, et al. Landing an unmanned air vehicle: vision based motion estimation and nonlinear control [J]. Asian Journal of Control, 1999, 1(3) : 128- 145.
  • 5SHARP C S, SHAKERNIA O, SASTRY S S. A vision system for landing an unmanned aerial vehicle [C]// IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001:1720- 1727.
  • 6SARIPALLI S, MONTGOMERY J F, SUKHATME G S. Vision-based autonomous landing of an unmanned aerial vehicle [C]// IEEE International Conference on Robotics and Automation. Washington, D. C. : IEEE, 2002:2799 - 2804.
  • 7GARCIA-PARDO P J, SUKHATME G S, MONTGOMERY J F. Towards vision-based safe landing for an autonomous helicopter [J]. Robotics and Autonomous Systems, 2002, 38(1): 19-29.
  • 8KANADE T, AMIDI O, KE Q. Real time and 3D vision for autonomous small and micro air vehicles [C]// Proceedings of the 43rd IEEE Conference on Decision and Control. Atlantis:IEEE, 2004: 1655 - 1662.
  • 9AMIDI O, KANADE T, MILLER J R. Vision-based autonomous helicopter research at Carnegie Mellon Ro botics Institute 1991- 1997 [C]// International Conference on American Helicopter Society. Hell, Japan: [s. n.], 1998: 375-386.
  • 10REN Qin yuan, LI Ping, HAN Bo. Landmark recognition system for mini rotor aerial robot [C]// Proceedings of WCICA 2006. Dalian.. IEEE, 2006: 10083-10087.

同被引文献31

  • 1郑元林,杨淑蕙,周世生,曹从军.CIE 1976 LAB色差公式的均匀性研究[J].包装工程,2005,26(2):48-49. 被引量:56
  • 2宋钧才.漫谈色差评定[J].中国纤检,2006(4):29-31. 被引量:9
  • 3Gordon N,Salmond D.Novel approach to nonlinear and non-Gaussian Bayesian state estimation [J].Proc. Institute Electric Engineering,1993,140(2):107-113.
  • 4Haug A J.A tutorial on Bayesian estimation and tracking techniques applicable to nonlinear and non-Gaussian processes.Mclean:MITREN Corporation,2005.
  • 5Huang K S,Min R R,Yen M S.The effects of pregrafting cotton fabrics with MAA/MAM on the dyeing kinetics of direct dyes in a finite bath [J].Journal of Applied Polymer Science,1997,65(6):1139-1142 3.0.CO;2-L target="_blank">.
  • 6CARPENTER J, CLIFFORD P, FEARNHEAD P. Improved parti- cle filter for nonlinear problems [ J]. IEE Proceedings of Radar, So- nar and Navigation, 1999, 43(12) : 2 -7.
  • 7MINKKINEN P. Practical application of sampling theory [ J]. Che- mometrics and Intelligent Laboratory Systems, 2004, 74( 1 ) : 85 - 94.
  • 8PANG Z Y, LIU D R, JIN N, et al. A Monte Carlo particle model assiated with neural networks for tracking problem [ J]. 1EEE Tranctinns on Circuits and Systems, 2008, 55-1( 11): 3421 - 3429.
  • 9ATHALYE A, BOLIC M, HONG S, et al. Architectures and mem- ory schemes for sampling and resampling in particle filters [ C]// 2004 IEEE l lth Digital Signal Processing Workshop and the 3rd IEEE Signal Processing Education Workshop. Piscataway: IEEE Press, 2004:92-96.
  • 10DOUCET A, GODSILL S J, ANDRIEU C, et al. On sequential Monte Carlo sampling methods for Bayesian filtering [ J]. Statistical Computation, 2000, 10(3) : 197 -208.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部