期刊文献+

自适应随机共振二进制基带信号处理 被引量:1

Binary base-band signal processing using adaptive stochastic resonance
下载PDF
导出
摘要 在二进制基带数字信号处理系统中引入随机共振作为非线性处理模块,可以有效地提高系统的输出信噪比.从误码率和输入输出互信息角度对随机共振进行研究,提出一种基于互信息的自适应随机共振信号处理方法,增强了二进制基带数字信号处理系统的鲁棒性.系统运行前先使用一很短的训练序列,随机共振模块根据输入输出互信息按照梯度方向自动调整系统参数,经有限步迭代后自动收敛到最佳共振点,并保持此状态对未知信息序列进行处理,使系统输出端误码率达到最低.仿真结果表明,新算法迅速收敛到最大互信息值,与直接判决方法相比具有更大的信噪比增益. Stochastic resonance was introduced to the binary base-band digital signal processing system to increase the signal to noise ratio.A new method of adaptive stochastic resonance was proposed,which is based on the maximal mutual information criteria.Firstly,a very short binary training sequence is used,the stochastic resonance module calculates the mutual information and tunes the system parameter through the gradient direction.The system converges to the best point after several steps,then the bit error rate of the system reaches the minimum.Secondly,the system is switched to deal with the unknown information sequence.Simulation results indicate that the proposed adaptive stochastic resonance method achieves an improvement of several dBs over the original direct decision method.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期692-695,共4页 Journal of Zhejiang University:Engineering Science
基金 通信系统信息控制技术国家级重点实验室资助项目
关键词 自适应随机共振 互信息 信号处理 adaptive stochastic resonance mutual information signal processing
  • 相关文献

参考文献7

  • 1BENZI R, SUTERA A, VUI.PIANI A. The mechanism of stochastic resonance [J]. Physics A, 1981, 14 (11): L453 - L457.
  • 2BENZI R, PARISI G, VUI.PIANI A. Stochastic resonance in climatic change [J]. SIAM Journal on Applied Mathematics, 1983, 43(3): 565- 578.
  • 3MCNAMARA B, WIESENFELD K. Theory of stochastic resonance [J]. Physics Review A, 1989, 39(9): 4854 -4869.
  • 4ANISHEHENKO V S, SAFONOVA M A, CHUA L O. Stochastic resonance in the nonautonomous Chua's circuit [J]. Journal of Circuits, Systems and Computers, 1993, 3(2): 553-578.
  • 5XU Bo-hou, DUAN Fa -bing, BAO Rong- hao, et al. Stochastic resonance with tuning system parameters: the application of bistable systems in signal processing [J]. Chaos, Solitons & Fractals, 2002, 13(4): 633- 644.
  • 6RISKEN H. The Fokker-Planck equation [M]. New York: Springer, 1983: 63-65.
  • 7樊昌信,张甫翊,徐炳祥,等.通信原理[M].5版.北京:国防工业出版社,2003:57-58.

共引文献4

同被引文献5

  • 13enzi R, Sutera A, Vulpiani A. The mechanism of tochastic resonance[J]. Phys A,1981(1) :453.
  • 2孙静静,王辅忠.频移随机共振在信号检测中的应用[J].四川大学学报:自然科学版,2009,46(7):285.
  • 3Anishehenko V S, Safonova M A,Chualo. Stochastic resonance in the nonautonamous Chua's circuit[J]. Journal of Circuits, Systems and Computers, 1993,3 (2) , 533.
  • 4Wu X X,Jiang Z P,Repperger D W. Enhancement of stochastic resonee by tuning system parameters and adding Noise simultaneously[J]. Proceedings of the 2006 American Control Con{erenee, 2006 : 3118.
  • 5李健,周激流,李军,任磊磊.双稳随机共振系统的检测性能研究[J].四川大学学报(自然科学版),2011,48(1):87-91. 被引量:3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部