期刊文献+

瓦斯浓度预测的混沌时序RBF神经网络模型 被引量:3

Model of chaotic sequence and RBF neural network on gas concentration forecast
下载PDF
导出
摘要 为对煤矿瓦斯质量浓度进行精确预测,针对瓦斯质量浓度的非线性特点,在验证其时间序列具有混沌特性的基础上,建立了基于混沌理论和径向基神经网络的预测模型。将实测瓦斯质量浓度时间序列进行相空间重构得到训练样本,并利用MATLAB仿真软件进行编程预测分析。结果表明,相对误差为0~3%,均方差为0.005 6,预测效果良好。实例验证该预测模型切实可行。 Directed at the accurate prediction of the coal gas concentration,this paper proposes a chaos theory and RBF neural network-forecasting model,established according to the nonlinear characteristics of gas concentration and the validated chaotic characteristics of time series for gas concentrations.The reconstruction of the gas concentration time series for the training samples and the use of MATLAB simulation to forecasting analysis show that the relative prediction error ranging from 0 to 3% and the mean square error of 0.005 6 justify the feasibility of prediction model.
出处 《黑龙江科技学院学报》 CAS 2010年第2期131-134,共4页 Journal of Heilongjiang Institute of Science and Technology
基金 黑龙江省研究生创新科研项目(YJSCX2009-066HLJ)
关键词 瓦斯质量浓度 混沌时间序列 神经网络 相空间重构 gas concentration chaotic time series neural network phase space reconstruction
  • 相关文献

参考文献6

二级参考文献21

  • 1王妍,徐伟,曲继圣.基于时间序列的相空间重构算法及验证(一)[J].山东大学学报(工学版),2005,35(4):109-114. 被引量:14
  • 2蒋金泉,李洪.基于混沌时序预测方法的冲击地压预测研究[J].岩石力学与工程学报,2006,25(5):889-895. 被引量:31
  • 3张剑英,程健,侯玉华,白静宜,裴小斐.煤矿瓦斯浓度预测的ANFIS方法研究[J].中国矿业大学学报,2007,36(4):494-498. 被引量:34
  • 4施式亮.煤炭安全非线性动力学分析[M].北京:煤炭工业出版社,2001.
  • 5Scholkopf B, Kah - Kah S, Burges C, et al. Comparing support vector machines with gaussian kernels to radial basis function classifiers [J]. IEEE Trans. on Signal Processing, 1997, 45:2 758 -2 765.
  • 6CHENG Jian, QIAN Jian-sheng, GUO Yi-nan . Least squares support vector machine for gas concentration forecasting in coal mine [J]. International Journal of Computer Science and Network Security, 2006, 6(6): 125-129.
  • 7BARANA G, TSUDA I. A new method for computing Lyapunov exponents [J]. Physica Letter A, 1993, 175 :421-427.
  • 8WOLF A, SWIFT J B, SWINNEY H L, VASTANO J A. Determining Lyapunov exponents from a time series [J]. Physica, 1985, 16D:285-317.
  • 9PACKARD N H, CRUTCHFIED J P, FARMER J D, SHAW R S. Geometry from a time series [J]. Physical Review Letters, 1980, 45 (9) : 712-716.
  • 10TAKENS F. Determining strange attractors in turbulence [J]. Lecture Notes in Mathematics, 1981, 898:366-381.

共引文献102

同被引文献25

  • 1张春明.灰色关联聚类的最大支撑树方法[J].山东交通学院学报,2004,12(2):72-75. 被引量:6
  • 2吕贵春,马云东.矿井瓦斯涌出量预测的灰色建模法[J].中国安全科学学报,2004,14(10):22-24. 被引量:56
  • 3GAO Li YU Hong-zhen.Prediction of Gas Emission Based on Infor-mation Fusion and Chaotic Time Series[J].Journal of China University of Mining and Technology,2006,16(1):94-96. 被引量:15
  • 4何俊,潘结南,聂百胜.瓦斯涌出严重程度分形预测研究[J].中国安全科学学报,2006,16(5):22-25. 被引量:9
  • 5Qu Zhi-ming, Liang Xiao-ying. Application of grey relation clustering and CGNN in gas concentration predictive in top corner of coal mine[ A]. 2009 International Conference on Computational Intelligence and Natural Computing[-C]. Piscat- away, New Jersey: IEEE Computer Society, 2009:241 - 244.
  • 6Zhao Jin-xian, Jin Hong-zhang, Yu Guang-hua. Coalmine gas concentration forecasting based on chaotic theory and neural network model [ A]. Proceedings of the Third International Conference on Information and Computing Science [ C]. Piscataway, New Jersey : IEEE Computer Society, 2010:35 - 38.
  • 7Song Wei-hua, Zhang Hong-wei. Regional predictive of coal and gas outburst hazard based on multi-factor pattern recogni- tion[J]. Procedia Earth and Planetary Science, 2009, 1 (1) : 347 - 353.
  • 8Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-sta- tionary time series analysis[A]. Proceedings of the Royal Society[C]. London: Royal Society, 1998:903-995.
  • 9Huang NE, Wu ML, Long SR, et al. A confidential limit for the empirical mode decomposition and Hilbert spectrum analysis [A]. Proceedings of the Royal Society of London[C],2003:2317 -2345.
  • 10廖向旗,李欣然,李培强,李村晓,胡剑宇.基于灰色关联聚类的负荷特性分类[J].电力科学与技术学报,2007,22(2):28-33. 被引量:15

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部